
Adjust Spine to fit

DS33014

© 1999 Microchip Technology Inc., Printed in the U.S.A. 3/99

Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199

Tel: 602.786.7200 Fax: 602.899.9210

M
P

A
S
M

 U
S
E
R

'S
 G

U
ID

E
 w

ith
 M

P
LIN

K
 a

n
d
 M

P
LIB

MPASM
USER'S GUIDE

with MPLINK and MPLIB

 1999 Micro

Information
only. No rep
respect to th
systems is n

 1999 Micr

The Microch
Microchip T
Microchip T

All product/c
MPASM USER’S GUIDE
with MPLINK and MPLIB
chip Technology Inc. DS33014G

contained in this publication regarding device applications and the like is intended by way of suggestion
resentation or warranty is given and no liability is assumed by Microchip Technology Incorporated with
e accuracy or use of such information. Use of Microchip’s products as critical components in life support
ot authorized except with express written approval by Microchip.

ochip Technology Incorporated. All rights reserved.

ip logo, name, PIC, PICmicro, PICMASTER, PICSTART, and PRO MATE are registered rademarks of
echnology Incorporated in the U.S.A. and other countries. MPLAB, and Smart Serial are trademarks of
echnology in the U.S.A. and other countries.

ompany trademarks mentioned herein are the property of their respective companies.

MPASM User’s Guide with MPLINK and MPLIB
DS33014G 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with
MPLINK and MPLIB

Table of Contents
 General Information
Introduction .. 1

Highlights ... 1

About This Guide ... 1

Warranty Registration .. 4

Recommended Reading .. 4

The Microchip Internet Web Site ... 5

Development Systems Customer Notification Service 6

Customer Support ... 8
 1999 Microchip Technology Inc. DS33014G-page iii

MPASM User’s Guide with MPLINK and MPLIB
 Part 1 – MPASM

Chapter 1. MPASM Preview
1.1 Introduction ...11

1.2 Highlights ..11

1.3 What MPASM Is ..11

1.4 What MPASM Does ..11

1.5 Migration Path ...12

1.6 Compatibility Issues ..12

Chapter 2. MPASM – Installation and Getting Started
2.1 Introduction ...13

2.2 Highlights ..13

2.3 Installation ...13

2.4 Overview of Assembler ...14

2.5 Assembler Input/Output Files ..16

Chapter 3. Using MPASM with DOS

3.1 Introduction ...21

3.2 Highlights ..21

3.3 Command Line Interface ...21

3.4 DOS Shell Interface ..24

Chapter 4. Using MPASM with Windows and MPLAB
4.1 Introduction ...27

4.2 Highlights ..27

4.3 Windows Shell Interface ..27

4.4 MPLAB Projects and MPASM ...29

4.5 Setting Up MPLAB to use MPASM ...30

4.6 Generating Output Files ..32

4.7 MPLAB/MPASM Troubleshooting ...32

Chapter 5. Directive Language
5.1 Introduction ...35

5.2 Highlights ..35
DS33014G-page iv 1999 Microchip Technology Inc.

Table of Contents
5.3 Directive Summary ... 35

5.4 _ _BADRAM – Identify Unimplemented RAM 39

5.5 BANKISEL – Generate Indirect Bank Selecting Code 39

5.6 BANKSEL – Generate Bank Selecting Code 40

5.7 CBLOCK – Define a Block of Constants 41

5.8 CODE – Begin an Object File Code Section 41

5.9 _ _CONFIG – Set Processor Configuration Bits 42

5.10 CONSTANT – Declare Symbol Constant 43

5.11 DA – Store Strings in Program Memory 44

5.12 DATA – Create Numeric and Text Data 44

5.13 DB – Declare Data of One Byte .. 45

5.14 DE – Declare EEPROM Data Byte ... 45

5.15 #DEFINE – Define a Text Substitution Label 46

5.16 DT – Define Table ... 47

5.17 DW – Declare Data of One Word ... 47

5.18 ELSE – Begin Alternative Assembly Block to IF 48

5.19 END – End Program Block ... 48

5.20 ENDC – End an Automatic Constant Block 49

5.21 ENDIF – End Conditional Assembly Block 49

5.22 ENDM – End a Macro Definition ... 49

5.23 ENDW – End a While Loop .. 50

5.24 EQU – Define an Assembler Constant ... 50

5.25 ERROR – Issue an Error Message ... 51

5.26 ERRORLEVEL – Set Message Level ... 51

5.27 EXITM – Exit from a Macro ... 52

5.28 EXPAND – Expand Macro Listing .. 52

5.29 EXTERN – Declare an Externally Defined Label 53

5.30 FILL – Specify Memory Fill Value ... 53

5.31 GLOBAL – Export a Label .. 54

5.32 IDATA – Begin an Object File Initialized Data Section 54

5.33 _ _IDLOCS – Set Processor ID Locations 55
 1999 Microchip Technology Inc. DS33014G-page v

MPASM User’s Guide with MPLINK and MPLIB
5.34 IF – Begin Conditionally Assembled Code Block56

5.35 IFDEF – Execute If Symbol has Been Defined56

5.36 IFNDEF – Execute If Symbol has not Been Defined57

5.37 INCLUDE – Include Additional Source File58

5.38 LIST – Listing Options ...58

5.39 LOCAL – Declare Local Macro Variable59

5.40 MACRO – Declare Macro Definition ...60

5.41 _ _MAXRAM – Define Maximum RAM Location60

5.42 MESSG – Create User Defined Message61

5.43 NOEXPAND – Turn off Macro Expansion62

5.44 NOLIST – Turn off Listing Output ..62

5.45 ORG – Set Program Origin ...62

5.46 PAGE – Insert Listing Page Eject ...63

5.47 PAGESEL – Generate Page Selecting Code63

5.48 PROCESSOR – Set Processor Type ..64

5.49 RADIX – Specify Default Radix ...64

5.50 RES – Reserve Memory ...65

5.51 SET – Define an Assembler Variable ..65

5.52 SPACE – Insert Blank Listing Lines ..66

5.53 SUBTITLE – Specify Program Subtitle ...66

5.54 TITLE – Specify Program Title ..66

5.55 UDATA – Begin an Object File Uninitialized Data Section67

5.56 UDATA_ACS – Begin an Object File Access
Uninitialized Data Section ...68

5.57 UDATA_OVR – Begin an Object File Overlayed
Uninitialized Data Section ...68

5.58 UDATA_SHR – Begin an Object File Shared
Uninitialized Data Section ...69

5.59 #UNDEFINE – Delete a Substitution Label70

5.60 VARIABLE – Declare Symbol Variable ...70

5.61 WHILE – Perform Loop While Condition is True71
DS33014G-page vi 1999 Microchip Technology Inc.

Table of Contents
Chapter 6. Using MPASM to Create Relocatable Objects
6.1 Introduction ... 73

6.2 Highlights .. 73

6.3 Header Files ... 73

6.4 Program Memory .. 74

6.5 Instruction Operands .. 75

6.6 RAM Allocation ... 75

6.7 Configuration Bits and ID Locations ... 76

6.8 Accessing Labels From Other Modules .. 77

6.9 Paging and Banking Issues .. 77

6.10 Unavailable Directives .. 79

6.11 Generating the Object Module .. 79

6.12 Code Examples .. 79

Chapter 7. Macro Language
7.1 Introduction ... 83

7.2 Highlights .. 83

7.3 Macro Syntax .. 83

7.4 Macro Directives ... 84

7.5 Text Substitution ... 84

7.6 Macro Usage .. 85

7.7 Code Examples .. 86

Chapter 8. Expression Syntax and Operation
8.1 Introduction ... 89

8.2 Highlights .. 89

8.3 Text Strings ... 89

8.4 Numeric Constants and Radix .. 91

8.5 High/Low/Upper .. 93

8.6 Increment/Decrement (++/--) .. 93
 1999 Microchip Technology Inc. DS33014G-page vii

MPASM User’s Guide with MPLINK and MPLIB
Chapter 9. Example Initialization Code
9.1 Introduction ...95

9.2 Highlights ..95

9.3 Initialization Code Examples ...95
DS33014G-page viii 1999 Microchip Technology Inc.

Table of Contents
 Part 2 – MPLINK

Chapter 1. MPLINK Preview
1.1 Introduction ... 99

1.2 Highlights .. 99

1.3 What MPLINK Is ... 99

1.4 What MPLINK Does .. 99

1.5 How MPLINK Helps You ... 100

1.6 MPLINK Examples .. 100

1.7 Platforms Supported ... 101

Chapter 2. MPLINK – Installation and Getting Started
2.1 Introduction ... 103

2.2 Highlights .. 103

2.3 Installation ... 103

2.4 Overview of Linker .. 104

2.5 Linker Input/Output Files ... 105

Chapter 3. Using MPLINK with DOS
3.1 Introduction ... 109

3.2 Highlights .. 109

3.3 Linker Command Line Options ... 109

Chapter 4. Using MPLINK with Windows and MPLAB
4.1 Introduction ... 111

4.2 Highlights .. 111

4.3 MPLAB Projects and MPLINK .. 111

4.4 Setting Up MPLAB to use MPLINK ... 113

4.5 Generating Output Files .. 117

4.6 MPLAB/MPLINK Troubleshooting .. 117

Chapter 5. MPLINK Linker Scripts
5.1 Introduction ... 119

5.2 Highlights .. 119

5.3 Linker Scripts Defined ... 119
 1999 Microchip Technology Inc. DS33014G-page ix

MPASM User’s Guide with MPLINK and MPLIB
5.4 Command Line Information ...119

5.5 Memory Region Definitions ...121

5.6 Logical Section Definitions ..125

5.7 STACK Definition ..126

5.8 Linker Script Caveats ..126

Chapter 6. Linker Processing
6.1 Introduction ...127

6.2 Highlights ..127

6.3 Linker Processing Overview ..127

6.4 Linker Allocation Algorithm ..128

6.5 Relocation Example ..129

6.6 Initialized Data ...130

Chapter 7. Sample Application 1
7.1 Highlights ..131

7.2 Overview ...131

7.3 Building the Application ...132

7.4 Source Code ...133

Chapter 8. Sample Application 2

8.1 Highlights ..137

8.2 Overview ...137

8.3 Building the Application ...138

8.4 Source Code – Boot Loader ..139

8.5 Source Code – Firmware ..142

Chapter 9. Sample Application 3
9.1 Highlights ..145

9.2 Overview ...145

9.3 Building the Application ...147

9.4 Source Code ...148
DS33014G-page x 1999 Microchip Technology Inc.

Table of Contents
Chapter 10. Sample Application 4
10.1 Highlights .. 151

10.2 Overview ... 151

10.3 Building the Application .. 153

10.4 Source Code ... 154
 1999 Microchip Technology Inc. DS33014G-page xi

MPASM User’s Guide with MPLINK and MPLIB
 Part 3 – MPLIB

Chapter 1. MPLIB Preview
1.1 Introduction ...163

1.2 Highlights ..163

1.3 What MPLIB Is ..163

1.4 What MPLIB Does ...163

1.5 How MPLIB Helps You ..164

Chapter 2. MPLIB – Installation and Getting Started

2.1 Introduction ...165

2.2 Highlights ..165

2.3 Installation ...165

2.4 Overview of Librarian ..166

Chapter 3. Using MPLIB
3.1 Introduction ...167

3.2 Highlights ..167

3.3 Usage Format ...167

3.4 Usage Examples ...168

3.5 Tips ...168
DS33014G-page xii 1999 Microchip Technology Inc.

Table of Contents
 Appendices

Appendix A. Hex File Formats
A.1 Introduction ... 171

A.2 Highlights .. 171

A.3 Intel Hex Format (.HEX) ... 171

A.4 8-Bit Split Format (.HXL/.HXH) ... 172

A.5 32-Bit Hex Format (.HEX) ... 173

Appendix B. Quick Reference

B.1 Introduction ... 175

B.2 Highlights .. 175

B.3 MPASM Quick Reference ... 175

B.4 Key to PICmicro Family Instruction Sets 180

B.5 12-Bit Core Instruction Set .. 181

B.6 14-Bit Core Instruction Set .. 183

B.7 16-Bit Core Instruction Set .. 186

B.8 Key to Enhanced 16-Bit Core Instruction Set 189

B.9 Enhanced 16-Bit Core Instruction Set .. 190

B.10 Hexadecimal to Decimal Conversion .. 194

B.11 ASCII Character Set ... 195

Appendix C. MPASM Errors/Warnings/Messages
C.1 Introduction ... 197

C.2 Highlights .. 197

C.3 Errors .. 197

C.4 Warnings ... 202

C.5 Messages ... 204

Appendix D. MPLINK Errors/Warnings
D.1 Introduction ... 207

D.2 Highlights .. 207

D.3 Parse Errors .. 207

D.4 Linker Errors ... 208
 1999 Microchip Technology Inc. DS33014G-page xiii

MPASM User’s Guide with MPLINK and MPLIB
D.5 Linker Warnings ..211

D.6 Library File Errors ..211

D.7 COFF File Errors ...212

D.8 COFF To COD Converter Errors ...213

D.9 COFF To COD Converter Warnings ...213

Appendix E. MPLIB Errors
E.1 Introduction ...215

E.2 Highlights ..215

E.3 Parse Errors ..215

E.4 Library File Errors ..215

E.5 COFF File Errors ...215

 Glossary
Introduction ..217

Highlights ...217

Terms ...217

 Index... 225

 Worldwide Sales and Service .. 230
DS33014G-page xiv 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

General Information
Introduction
This first chapter contains general information that will be useful to know
before working with MPASM, MPLINK, and MPLIB.

Highlights
The information you will garner from this chapter:

• About This Guide

• Warranty Registration

• Recommended Reading

• The Microchip Internet Web Site

• Development Systems Customer Notification Service

• Customer Support

About This Guide

Document Layout
This document describes how to use MPASM, MPLINK, and MPLIB to
develop code for PICmicro® microcontroller applications. All of these program
can work within the MPLAB™ Integrated Development Environment (IDE).
For a detailed discussion about basic MPLAB functions, refer to the MPLAB
User’s Guide (DS51025).

The User’s Guide layout is as follows:

Part 1 – MPASM

• Chapter 1: MPASM Preview – defines MPASM and describes what it
does and how it works with other tools.

• Chapter 2: MPASM – Installation and Getting Started – describes
how to install MPASM and gives an overview of operation.

• Chapter 3: Using MPASM with DOS – describes how to use MPASM
with DOS via the command line or a DOS shell interface.

• Chapter 4: Using MPASM with WIndows® and MPLAB – describes
how to use MPASM with Microsoft Windows via a Windows shell inter-
face or MPLAB.

• Chapter 5: Directive Language – describes the MPASM programming
language including statements, operators, variables, and other ele-
ments.
 1999 Microchip Technology Inc. DS33014G-page 1

MPASM User’s Guide with MPLINK and MPLIB
• Chapter 6: Using MPASM to Create Relocatable Objects –
describes how to use MPASM in conjunction with MPLINK, Microchip’s
linker.

• Chapter 7: Macro Language – describes how to use MPASM’s built-in
macro processor.

• Chapter 8: Expression Syntax and Operation – provides guidelines
for using complex expressions in MPASM source files.

• Chapter 9: Example Initialization Code – lists code examples for ini-
tializing PIC16CXX, PIC17CXX, and PIC18CXX devices.

Part 2 – MPLINK

• Chapter 1: MPLINK Preview – defines MPLINK and describes what it
does and how it works with other tools.

• Chapter 2: MPLINK – Installation and Getting Started - describes
how to install MPLINK and gives an overview of operation.

• Chapter 3: Using MPLINK with DOS – describes how to use MPLINK
with DOS via the command line.

• Chapter 4: Using MPLINK with Windows and MPLAB – describes
how to use MPLINK with Microsoft Windows via a DOS window or
MPLAB.

• Chapter 5: MPLINK Linker Scripts – discusses how to generate and
use linker scripts to control linker operation.

• Chapter 6: Linker Processing – describes how the linker processes
files.

• Chapter 7: Sample Application 1 – explains how to place program
code in different memory regions, how to place data tables in ROM
memory, and how to set configuration bits in C.

• Chapter 8: Sample Application 2 – explains how to partition memory
for a boot loader and how to compile code that will be loaded into exter-
nal RAM and executed.

• Chapter 9: Sample Application 3 – explains how to access peripher-
als that are memory mapped and how to create new sections.

• Chapter 10: Sample Application 4 – explains how to manually parti-
tion RAM space for program usage.

Part 3 – MPLIB

• Chapter 1: MPLIB Preview – defines MPLIB and describes what it
does and how it works with other tools.

• Chapter 2: MPLIB – Installation and Getting Started - describes how
to install MPLIB and gives an overview of operation.

• Chapter 3: Using MPLIB – describes how to use MPLIB via the DOS
command line or a DOS window in Microsoft Windows.
DS33014G-page 2 1999 Microchip Technology Inc.

General Information
Appendices

• Appendix A: Hex File Formats – provides a description of the different
hex file formats that may be used.

• Appendix B: Quick Reference – lists PICmicro device instruction sets,
hexadecimal to decimal conversions, and ASCII Character Set.

• Appendix C: MPASM Errors/Warnings/Messages – contains a
descriptive list of the errors, warnings, and messages generated by
MPASM.

• Appendix D: MPLINK Errors/Warnings – contains a descriptive list of
the errors and warnings generated by MPLINK.

• Appendix E: MPLIB Errors – contains a descriptive list of the errors
generated by MPLIB.

• Glossary – A glossary of terms used in this guide.

• Index – Cross-reference listing of terms, features, and sections of this
document.

• Worldwide Sales and Service – gives the address, telephone and fax
number for Microchip Technology Inc. Sales and Service locations
throughout the world.

Conventions Used in this Guide
This manual uses the following documentation conventions:

Documentation Conventions

Description Represents Examples

Code

Courier Font User-entered code or sample
code

#define ENIGMA

Angle Brackets: <> Variables. Text you supply <label>, <exp>

Square Brackets: [] Optional Arguments MPASMWIN
[main.asm]

Curly Brackets and
Pipe Character:{ | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel
 { 0 | 1 }

Lowercase Characters
in Quotes

Type of data “filename”

Ellipses: ... Used to imply, but not show,
additional text that is not rele-
vant to the example.

list
[“list_option”
, ...,
“list_option”]

0xnnnn 0xnnnn represents a hexadeci-
mal number where n is a hexa-
decimal digit

0xFFFF, 0x007A
 1999 Microchip Technology Inc. DS33014G-page 3

MPASM User’s Guide with MPLINK and MPLIB
Updates
All documentation becomes dated, and this user’s guide is no exception.
Since MPASM, MPLINK, MPLIB, and other Microchip tools are constantly
evolving to meet customer needs, some actual dialogs and/or tool
descriptions may differ from those in this document. Please refer to our web
site to obtain the latest documentation available.

Warranty Registration
Please complete the enclosed Warranty Registration Card and mail it
promptly. Sending in your Warranty Registration Card entitles you to receive
new product updates. Interim software releases are available at the Microchip
web site.

Recommended Reading
This user’s guide describes how to use MPASM, MPLINK, and MPLIB. The
user may also find the data sheets for specific microcontroller devices
informative in developing firmware.

README.ASM, README.LKR

For the latest information on using MPASM and MPLINK, read the README
files (ASCII text files) included with the MPASM software. The README files
contain update information that may not be included in this document.

MPLAB User’s Guide (DS51025)

Comprehensive guide that describes installation and features of Microchip’s
MPLAB Integrated Development Environment, as well as the editor and
simulator functions in the MPLAB environment.

Interface

Underlined, Italics Text
with Right Arrow

Defines a menu selection from
the menu bar.

File > Save

In-text Bold Characters Designates a button OK, Cancel

Uppercase Charac-
ters in Angle Brackets:
< >

Delimiters for special keys. <TAB>, <ESC>

Documents

Italic characters Referenced books. MPLAB User’s
Guide

Documentation Conventions

Description Represents Examples
DS33014G-page 4 1999 Microchip Technology Inc.

General Information
Technical Library CD-ROM (DS00161)

This CD-ROM contains comprehensive data sheets for Microchip PICmicro
devices available at the time of print. To obtain this disk, contact the nearest
Microchip Sales and Service location (see back page) or download individual
data sheet files from the Microchip web site (http://www.microchip.com).

Embedded Control Handbook Vol.1 & 2 (DS00092 & DS00167)

These handbooks contain a wealth of information about microcontroller
applications. To obtain these documents, contact the nearest Microchip Sales
and Service location (see back page).

The application notes described in these manuals are also obtainable from
Microchip Sales and Service locations or from the Microchip web site
(http://www.microchip.com).

Microsoft Windows Manuals

This manual assumes that users are familiar with Microsoft Windows
operating system. Many excellent references exist for this software program,
and should be consulted for general operation of Windows.

The Microchip Internet Web Site
Microchip provides on-line support on the Microchip World Wide Web (WWW)
site.

The web site is used by Microchip as a means to make files and information
easily available to customers. To view the site, the user must have access to
the Internet and a web browser, such as Netscape® Navigator or Microsoft®

Internet Explorer®. Files are also available for FTP download from our FTP
site.

Connecting to the Microchip Internet Web Site

The Microchip website is available by using your favorite Internet browser to
attach to:

http://www.microchip.com

The file transfer site is available by using an FTP program/client to connect to:

ftp://ftp.microchip.com

The website and file transfer site provide a variety of services. Users may
download files for the latest Development Tools, Data Sheets, Application
Notes, User’s Guides, Articles, and Sample Programs. A variety of Microchip
specific business information is also available, including listings of Microchip
sales offices, distributors, and factory representatives. Other data available for
consideration is:

• Latest Microchip Press Releases
• Technical Support Section with Frequently Asked Questions
• Design Tips
• Device Errata
• Job Postings
 1999 Microchip Technology Inc. DS33014G-page 5

MPASM User’s Guide with MPLINK and MPLIB
• Microchip Consultant Program Member Listing
• Links to other useful web sites related to Microchip Products
• Conferences for products, Development Systems, technical information

and more
• Listing of seminars and events

Development Systems Customer Notification Service
Microchip started the customer notification service to help our customers
keep current on Microchip products with the least amount of effort. Once you
subscribe to one of our list servers, you will receive email notification
whenever we change, update, revise or have errata related to that product
family or development tool. See the Microchip WWW page for other Microchip
list servers.

The Development Systems list names are:

• Compilers

• Emulators

• Programmers

• MPLAB

• Otools

Once you have determined the names of the lists that you are interested in,
you can subscribe by sending a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe <listname> yourname

Here is an example:

subscribe mplab John Doe

To UNSUBSCRIBE from these lists, send a message to:

listserv@mail.microchip.com

with the following as the body:

unsubscribe <listname> yourname

Here is an example:

unsubscribe mplab John Doe

The following sections provide descriptions of the available Development
Systems lists.
DS33014G-page 6 1999 Microchip Technology Inc.

General Information
Compilers
The latest information on Microchip C compilers, Linkers, and Assemblers.
These include MPLAB-C17, MPLAB-C18, MPLINK, MPASM as well as the
Librarian, MPLIB for MPLINK.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe compilers yourname

Emulators
The latest information on Microchip In-Circuit Emulators. These include
MPLAB-ICE and PICMASTER®.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe emulators yourname

Programmers
The latest information on Microchip PICmicro device programmers. These
include PRO MATE® II and PICSTART® Plus.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe programmers yourname

MPLAB
The latest information on Microchip MPLAB, the Windows Integrated
Development Environment for development systems tools. This list is focused
on MPLAB, MPLAB-SIM, MPLAB’s Project Manager and general editing and
debugging features. For specific information on MPLAB compilers, linkers,
and assemblers, subscribe to the COMPILERS list. For specific information
on MPLAB emulators, subscribe to the EMULATORS list. For specific
information on MPLAB device programmers, please subscribe to the
PROGRAMMERS list.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe mplab yourname
 1999 Microchip Technology Inc. DS33014G-page 7

MPASM User’s Guide with MPLINK and MPLIB
Otools
The latest information on other development system tools provided by
Microchip. For specific information on MPLAB and its integrated tools refer to
the other mail lists.

To SUBSCRIBE to this list, send a message to:

listserv@mail.microchip.com

with the following as the body:

subscribe otools yourname

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Corporate Applications Engineer (CAE)

• Hot line

Customers should call their distributor, representative, or field application
engineer (FAE) for support. Local sales offices are also available to help
customers. See the back cover for a listing of sales offices and locations.

Corporate applications engineers (CAEs) may be contacted at
(602) 786-7627.

In addition, there is a Systems Information and Upgrade Line. This line
provides system users a listing of the latest versions of all of Microchip's
development systems software products. Plus, this line provides information
on how customers can receive any currently available upgrade kits.

The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.
DS33014G-page 8 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

M
PA

S
M

1

MPLINK and MPLIB

Part 1 – MPASM
Chapter 1. MPASM Preview ..11

Chapter 2. MPASM – Installation and Getting Started13

Chapter 3. Using MPASM with DOS ...21

Chapter 4. Using MPASM with Windows and MPLAB27

Chapter 5. Directive Language ...35

Chapter 6. Using MPASM to Create Relocatable Objects73

Chapter 7. Macro Language ...83

Chapter 8. Expression Syntax and Operation89

Chapter 9. Example Initialization Code ...95
 1999 Microchip Technology Inc. DS33014G-page 9

MPASM User’s Guide with MPLINK and MPLIB
DS33014G-page 10 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

M
PA

S
M

1

MPLINK and MPLIB

Chapter 1. MPASM Preview
1.1 Introduction
This chapter will give you an preview of MPASM and its capabilities.

1.2 Highlights
Topics covered in this chapter:

• What MPASM Is

• What MPASM Does

• Migration Path

• Compatibility Issues

1.3 What MPASM Is
MPASM is a DOS or Windows-based PC application that provides a platform
for developing assembly language code for Microchip’s PICmicro
microcontroller (MCU) families. Generically, MPASM will refer to the entire
development platform including the macro assembler and utility functions.

Use of the Microchip MPASM Universal Assembler requires an IBM PC/AT®
or compatible computer, running MS-DOS® V5.0 or greater, or Microsoft®
Windows 95/98/NT.

MPASM supports all PICmicro, memory, and secure data products from
Microchip.

1.4 What MPASM Does
MPASM provides a universal solution for developing assembly code for all of
Microchip’s 12-bit, 14-bit, 16-bit, and Enhanced 16-bit core PICmicro
microcontrollers. Notable features include:

• All PICmicro MCU Instruction Sets

• Command Line Interface

• Command Shell Interfaces

• Rich Directive Language

• Flexible Macro Language

• MPLAB Compatibility
 1999 Microchip Technology Inc. DS33014G-page 11

MPASM User’s Guide with MPLINK and MPLIB
1.5 Migration Path
Since MPASM is a universal assembler for all PICmicro devices, an
application developed for the PIC16C54 can be easily translated into a
program for the PIC16C71. This would require changing the instruction
mnemonics that are not the same between the machines (assuming that
register and peripheral usage were similar). The rest of the directive and
macro language will be the same.

1.6 Compatibility Issues
MPASM is compatible with all Microchip development systems currently in
production. This includes MPLAB-SIM (PICmicro MCU discrete-event
simulator), MPLAB-ICE (PICmicro MCU Universal In-Circuit Emulator),
PRO MATE (the Microchip Universal Programmer), and PICSTART Plus (the
Microchip low-cost development programmer).

MPASM supports a clean and consistent method of specifying radix (see
Chapter 5). You are encouraged to develop new code using the methods
described within this document, even though certain older syntaxes may be
supported for compatibility reasons.
DS33014G-page 12 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

M
PA

S
M

1

MPLINK and MPLIB

Chapter 2. MPASM – Installation and Getting Started
2.1 Introduction
This chapter provides instructions for installation of MPASM on your system,
and an overview of the assembler (MPASM).

2.2 Highlights
Topics covered in this chapter:

• Installation

• Overview of Assembler

• Assembler Input/Output Files

2.3 Installation
There are three versions of MPASM:

• a DOS version, MPASM.EXE, for DOS 5.0 or greater

• a DOS-Extender version, MPASM_DP.EXE

• a Windows 3.x/95/98/NT version, MPASMWIN.EXE (Recommended)

MPASM.EXE has a command line interface. MPASM.EXE may be used with
DOS or a DOS window in Windows 3.x/95/98/NT. You can use it with MPLAB,
though MPASMWIN.EXE is recommended.

MPASM_DP.EXE has a DOS shell interface. MPASM_DP.EXE may be used
with DOS or a DOS window in Windows 3.x. You can use it with MPLAB
running under Windows 3.x, though MPASMWIN.EXE is recommended.

MPASMWIN.EXE has a Windows shell interface. MPASMWIN.EXE may be used
with Windows 3.x/95/98/NT. You can use this version with MPLAB
(recommended) or stand-alone.

If you are going to use MPLAB with MPASM, you do not need to install the
assembler and supporting files separately. When MPLAB is installed, MPASM
is also installed. To find out how to install MPLAB, please refer to the MPLAB
User’s Guide. You may obtain the MPLAB software and user’s guide either
from the Microchip Technical Library CD or from our website.

If you are not going to use MPLAB with MPASM, you can obtain the
assembler and supporting files separately either from the Microchip Technical
Library CD or from our website. MPASM will be in a zip file. To install:

• Create a directory in which to place the files

• Unzip the MPASM files using either WinZip® or PKZIP®
 1999 Microchip Technology Inc. DS33014G-page 13

MPASM User’s Guide with MPLINK and MPLIB
2.4 Overview of Assembler
MPASM can be used in two ways:

• To generate absolute code that can be executed directly by a microcon-
troller.

• To generate object code that can be linked with other separately assem-
bled or compiled modules.

Absolute code is the default output from MPASM. This process is shown in
Figure 2.1.

When a source file is assembled in this manner, all values used in the source
file must be defined within that source file, or in files that have been explicitly
included. If assembly proceeds without errors, a HEX file will be generated,
containing the executable machine code for the target device. This file can
then be used in conjunction with a device programmer to program the
microcontroller.

Figure 2.1: Generating Absolute Code

MPASM also has the ability to generate an object module that can be linked
with other modules using Microchip’s MPLINK linker to form the final
executable code. This method is very useful for creating reusable modules
that do not have to be retested each time they are used. Related modules can
also be grouped and stored together in a library using Microchip’s MPLIB
Librarian. Required libraries can be specified at link time, and only the
routines that are needed will be included in the final executable.

A visual representation of this process is shown in Figure 2.2 and Figure 2.3.

Refer to Chapter 6 for more information on the differences between absolute
and object assembly.

CODE.HEXMPASM ProgrammerCODE.ASM CPU
DS33014G-page 14 1999 Microchip Technology Inc.

MPASM – Installation and Getting Started

M
PA

S
M

1

Figure 2.2: Creating a Reusable Object Library

Figure 2.3: Generating Executable Code From Object Modules

UNITS.LIB

MPASMUNIT1.ASM

MPASMUNIT2.ASM

MPASMUNIT3.ASM

MPLIB

UNIT1.O

MPLIB

UNIT2.O

MPLIB

UNIT3.O

MPASMMAIN.ASM

MPASMMORE.ASM

MPLINK

MAIN.O

MORE.O

MAIN.HEX Programmer CPU

UNITS.LIB
 1999 Microchip Technology Inc. DS33014G-page 15

MPASM User’s Guide with MPLINK and MPLIB
2.5 Assembler Input/Output Files
These are the default file extensions used by MPASM and the associated
utility functions.

Table 2.1: MPASM Default Extensions

2.5.1 Source Code Format (.ASM)
The source code file may be created using any ASCII text file editor. It should
conform to the following basic guidelines.

Each line of the source file may contain up to four types of information:

• labels

• mnemonics

• operands

• comments

The order and position of these are important. Labels must start in column
one. Mnemonics may start in column two or beyond. Operands follow the
mnemonic. Comments may follow the operands, mnemonics or labels, and
can start in any column. The maximum column width is 255 characters.

Extension Purpose

.ASM Default source file extension input to MPASM:
<source_name>.ASM

.LST Default output extension for listing files generated by
MPASM:
 <source_name>.LST

.ERR Output extension from MPASM for error files:
<source_name>.ERR

.HEX Output extension from MPASM for hex files (see
Appendix A),
 <source_name>.HEX

.HXL/

.HXH
Output extensions from MPASM for separate low byte and
high byte hex files:
<source_name>.HXL, <source_name>.HXH

.COD Output extension for the symbol and debug file. This file may
be output from MPASM or MPLINK:
<source_name>.COD

.O Output extension from MPASM for object files:
<source_name>.O
DS33014G-page 16 1999 Microchip Technology Inc.

MPASM – Installation and Getting Started

M
PA

S
M

1

Whitespace or a colon must separate the label and the mnemonic, and the
mnemonic and the operand(s). Multiple operands must be separated by a
comma. For example:

Example 2.1: Sample MPASM Source Code (Shows multiple operands)

2.5.1.1 Labels

A label must start in column 1. It may be followed by a colon (:), space, tab or
the end of line.

Labels must begin with an alpha character or an under bar (_) and may
contain alphanumeric characters, the under bar and the question mark.

Labels may be up to 32 characters long. By default they are case sensitive,
but case sensitivity may be overridden by a command line option. If a colon is
used when defining a label, it is treated as a label operator and not part of the
label itself.

2.5.1.2 Mnemonics

Assembler instruction mnemonics, assembler directives and macro calls must
begin in column two or greater. If there is a label on the same line, instructions
must be separated from that label by a colon, or by one or more spaces or
tabs.

2.5.1.3 Operands

Operands must be separated from mnemonics by one or more spaces, or
tabs. Multiple operands must be separated by commas.

;
; Sample MPASM Source Code. For illustration only.
;
 list p=16c54
 Dest equ H’0B’

 org H’01FF’
 goto Start

 org H’0000’

 Start movlw H’0A’
 movwf Dest
 bcf Dest, 3
 goto Start

 end
 1999 Microchip Technology Inc. DS33014G-page 17

MPASM User’s Guide with MPLINK and MPLIB
2.5.1.4 Comments

MPASM treats anything after a semicolon as a comment. All characters
following the semicolon are ignored through the end of the line. String
constants containing a semicolon are allowed and are not confused with
comments.
DS33014G-page 18 1999 Microchip Technology Inc.

MPASM – Installation and Getting Started

M
PA

S
M

1

2.5.2 Listing File Format (.LST)

Example 2.2: Sample MPASM Listing File (.LST)

The listing file format produced by MPASM is straight forward:

The product name and version, the assembly date and time, and the page
number appear at the top of every page.

The first column of numbers contains the base address in memory where the
code will be placed. The second column displays the 32-bit value of any
symbols created with the SET, EQU, VARIABLE, CONSTANT, or CBLOCK

MPASM 01.99.21 Intermediate MANUAL.ASM 5-30-1997 15:31:05 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 ;
 00002 ; Sample MPASM Source Code. For illustration only.
 00003 ;
 00004 list p=16c54
0000000B 00005 Dest equ H’0B’
 00006
01FF 00007 org H’01FF’
01FF 0A00 00008 goto Start
 00009
0000 00010 org H’0000’
 00011
0000 0C0A 00012 Start movlw H’0A’
0001 002B 00013 movwf Dest
0002 0A00 00014 goto Start
 00015
 00016 end

MPASM 01.99.21 Intermediate MANUAL.ASM 5-30-1997 15:31:05 PAGE 2

SYMBOL TABLE
 LABEL VALUE

Dest 0000000B
Start 00000000
__16C54 00000001

MEMORY USAGE MAP ('X' = Used, '-' = Unused)

0000 : XXX------------- ---------------- ---------------- ----------------
01C0 : ---------------- ---------------- ---------------- ---------------X

All other memory blocks unused.

Program Memory Words Used: 4
Program Memory Words Free: 508

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 0 reported, 0 suppressed
 1999 Microchip Technology Inc. DS33014G-page 19

MPASM User’s Guide with MPLINK and MPLIB
directives. The third column is reserved for the machine instruction. This is the
code that will be executed by the PICmicro MCU. The fourth column lists the
associated source file line number for this line. The remainder of the line is
reserved for the source code line that generated the machine code.

Errors, warnings, and messages are embedded between the source lines,
and pertain to the following source line.

The symbol table lists all symbols defined in the program. The memory usage
map gives a graphical representation of memory usage. ‘X’ marks a used
location and ‘-’ marks memory that is not used by this object. The memory
map is not printed if an object file is generated.

2.5.3 Error File Format (.ERR)
MPASM by default generates an error file. This file can be useful when
debugging your code. The MPLAB Source Level Debugger will automatically
open this file in the case of an error. The format of the messages in the error
file is:

<type>[<number>] <file> <line> <description>

For example:

Error[113] C:\PROG.ASM 7 : Symbol not previously defined (start)

Appendix C describes the error messages generated by MPASM.

2.5.4 Hex File Formats (.HEX, .HXL, .HXH)
MPASM is capable of producing different hex file formats. See Appendix A for
a detailed description of these formats.

2.5.5 Symbol and Debug File Format (.COD)
When MPASM is used to generate absolute code, it produces a COD file for
use in MPLAB debugging of code.

2.5.6 Object File Format (.O)
Object files are the relocatable code produced from source files.
DS33014G-page 20 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

M
PA

S
M

1

MPLINK and MPLIB

Chapter 3. Using MPASM with DOS
3.1 Introduction
This chapter is dedicated to describing the versions of MPASM for DOS
(MPASM.EXE and MPASM_DP.EXE). The DOS version (MPASM.EXE) is run
from a command line or a DOS shell in DOS or a DOS window in Windows.
The extended DOS (MPASM_DP.EXE) version is run in the same manner but
can be used when the DOS version runs out of memory.

3.2 Highlights
Topics covered in this chapter:

• Command Line Interface

• DOS Shell Interface

3.3 Command Line Interface
MPASM can be invoked through the command line interface as follows:

MPASM [/<Option>[/<Option>...]] [<filename>]

or

MPASM_DP [/<Option>[/<Option>...]] [<filename>]

Where

/<Option> – refers to one of the command line options

<filename> – is the file being assembled

For example, if test.asm exists in the current directory, it can be assembled
with following command:

MPASM /e /l test

The assembler defaults (noted below) can be overridden with options:

If the source filename is omitted, the appropriate shell interface is invoked.

• /<option> enables the option
• /<option>+ enables the option
• /<option>- disables the option
• /<option><filename> if appropriate, enables the option and

directs the output to the specified file
 1999 Microchip Technology Inc. DS33014G-page 21

MPASM User’s Guide with MPLINK and MPLIB
Table 3.1: Assembler Command Line Options

Option Default Description

? N/A Displays the MPASM Help Panel

a INHX8M Set hex file format:
/a<hex-format>
where <hex-format> is one of
[INHX8M | INHX8S | INHX32]

c On Enable/Disable case sensitivity

d None Define symbol:
/dDebug /dMax=5 /dString=”abc”

e On Enable/Disable/Set Path for error file
/e Enable
/e + Enable
/e - Disable
/e <path>error.file Enables/sets path

h N/A Displays the MPASM Help Panel

l On Enable/Disable/Set Path for the listing file
/l Enable
/l + Enable
/l - Disable
/l <path>list.file Enables/sets path

m On Enable/Disable macro expansion

o Off Enable/Disable/Set Path for the object file
/o Enable
/o + Enable
/o - Disable
/o <path>object.file Enables/sets path

p None Set the processor type:
/p<processor_type>
where <processor_type> is a PICmicro device.
For example, PIC16C54

q Off Enable/Disable quiet mode (suppress screen output)

r Hex Defines default radix:
/r<radix>
where <radix> is one of [HEX | DEC | OCT]

t 8 List file tab size: /t<size>
DS33014G-page 22 1999 Microchip Technology Inc.

Using MPASM with DOS

M
PA

S
M

1

w 0 Set message level:
/w<level>
where <level> is one of [0|1|2]
0 – all messages
1 – errors and warnings
2 – errors only

x Off Enable/Disable/Set Path for cross reference file
/x Enable
/x + Enable
/x - Disable
/x <path>xref.file Enables/sets path

Table 3.1: Assembler Command Line Options (Continued)
 1999 Microchip Technology Inc. DS33014G-page 23

MPASM User’s Guide with MPLINK and MPLIB
3.4 DOS Shell Interface
The MPASM DOS Shell interface displays a screen in Text Graphics mode.
On this screen, you can fill in the name of the source file you want to
assemble and other information.

Figure 3.1: Text Graphics Mode Display

3.4.1 Source File
Type the name of your source file. The name can include a DOS path
and wild cards. If you use wild cards (one of * or ?), a list of all matching
files is displayed for you to select from. To automatically enter *.ASM in this
field, press <TAB>.

3.4.2 Processor Type
If you do not specify the processor in your source file, use this field to select
the processor. Enter the field by using the arrow keys, then toggle through the
processors by pressing <RET>.

3.4.3 Error File
An error file (<sourcename>.ERR) is created by default. To turn the error file
off, use the <↓> to move to the YES and press <RET> to change it to NO. The
error filename can be changed by pressing the <TAB> key to move to the
shaded area and typing a new name. Wild cards are not allowed in the error
filename.
DS33014G-page 24 1999 Microchip Technology Inc.

Using MPASM with DOS

M
PA

S
M

1

3.4.4 Cross Reference File
A cross reference file (<sourcename>.XRF) is not generated by default. To
create a cross reference file, use the keyboard arrow keys to move to the NO
and press <RET> to change it to YES. The cross reference filename can be
changed by pressing the <TAB> key to move to the shaded area and typing a
new name. Wild cards are not allowed in the cross reference filename.

3.4.5 Listing File
A listing file (<sourcename>.LST) is created by default. To turn the listing file
off, use the <↓> to move to the YES and press <RET> to change it to NO. The
listing filename can be changed by pressing the <TAB> key to move to the
shaded area and typing a new name. Wild cards are not allowed in the listing
filename.

3.4.6 HEX Dump Type
Set this value to generate the desired hex file format. Changing this value is
accomplished by moving to the field with the <↓> key and pressing the <RET>
key to scroll through the available options. To change the hex filename, press
the <TAB> key to move the shaded area, and type in the new name.

3.4.7 Assemble to Object File
Enabling this option will generate the relocatable object code that can be input
to the linker and suppress generation of the hex file. The filename may be
modified in the same manner as the error file.
 1999 Microchip Technology Inc. DS33014G-page 25

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 26 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

M
PA

S
M

1

MPLINK and MPLIB

Chapter 4. Using MPASM with Windows and MPLAB
4.1 Introduction
This chapter is dedicated to describing the version of MPASM for Windows
(MPASMWIN.EXE). This version may be run stand-alone as a Windows shell,
or within MPLAB.

4.2 Highlights
Topics covered in this chapter:

• Windows Shell Interface

• MPLAB Projects and MPASM

• Setting Up MPLAB to use MPASM

• Generating Output Files

• MPLAB/MPASM Troubleshooting

4.3 Windows Shell Interface
MPASM for Windows provides a graphical interface for setting assembler
options. It is invoked by executing MPASMWIN.EXE while in Windows.

Figure 4.1: MPASM Windows Shell Interface
 1999 Microchip Technology Inc. DS33014G-page 27

MPASM User’s Guide with MPLINK and MPLIB
Select a source file by typing in the name or using the Browse button. Set the
various options as described below. Then click Assemble to assemble the
source file.

Note: When MPASM for Windows is invoked through MPLAB, the
options screen is not available. Refer to the Make Setup option in
the MPLAB User’s Guide for selecting assembly options in
MPLAB.

Option Usage

Radix Override any source file radix settings.

Warning Level Override any source file message level settings.

Hex Output Override any source file hex file format settings.

Generated Files Enable/disable various output files.

Case Sensitivity Enable/disable case sensitivity.

Macro Expansion Override any source file macro expansion
settings.

Processor Override any source file processor settings.

Tab Size Set the list file tab size.

Extra Options Any additional command line options. See
Section 3.3 for more details.

Save Settings on Exit Save these settings in MPLAB.INI. They will be
used the next time you run MPASMWIN.
DS33014G-page 28 1999 Microchip Technology Inc.

Using MPASM with Windows and MPLAB

M
PA

S
M

1

4.4 MPLAB Projects and MPASM
MPLAB projects are composed of nodes (Figure 4.2). These represent files
used by a generated project.

• Target Node – Final Output

- HEX File

• Project Nodes – Components

- Assembly Source Files

In this chapter, we are concerned with the relationship between MPLAB and
MPASM. For more general information about MPLAB projects, consult the
MPLAB User’s Guide (DS51025).

Figure 4.2: Project Relationships – MPASM

Projects are used to apply language tools, such as assemblers, compilers and
linkers, to source files in order to make executable (.HEX) files. This diagram
shows the relationship between the final .HEX file and the component .ASM
files used to create it.

Project Files Language Tools

Target Node

.HEX

Source Node

.ASM
MPASM Properties
 1999 Microchip Technology Inc. DS33014G-page 29

MPASM User’s Guide with MPLINK and MPLIB
4.5 Setting Up MPLAB to use MPASM
Follow these steps to set up MPASM to use with MPLAB:

1. After creating your project (Project>New Project), the Edit Project dialog
will appear. Select the name of the project (ex: tutor84.hex) in the
Project Files list to activate the Node Properties button. Then click on
Node Properties.

Figure 4.3: Edit Project Dialog
DS33014G-page 30 1999 Microchip Technology Inc.

Using MPASM with Windows and MPLAB

M
PA

S
M

1

2. In the Node Properties dialog, select MPASM as the Language Tool and,
if desired, set other assembler options.

Figure 4.4: Node Properties Dialog

3. Add source files to your project. Use the Add Node button of the Edit
Project dialog to bring up the Add Node dialog.

Figure 4.5: Add Node Dialog – Source Files
 1999 Microchip Technology Inc. DS33014G-page 31

MPASM User’s Guide with MPLINK and MPLIB
4. Click OK on the Edit Project dialog when you are done.

Figure 4.6: Edit Project Dialog – Nodes Added

4.6 Generating Output Files
Once the MPLAB project is set up, you must build it. Select Project>Make
Project to do this. Hex files are automatically loaded into program memory.

In addition to the hex file, MPASM generates other files to help you debug
your code. See Section 2.5 for more information on these files and their
specific functions.

4.7 MPLAB/MPASM Troubleshooting
If have experienced problems, check the following:

Select Project>Install Language Tool... and check that MPASM points to
MPASMWIN.EXE in the MPLAB installation directory and that the Windowed
option is selected. Alternatively, MPASM can point to MPASM.EXE, but the
Command-line option should be selected.
DS33014G-page 32 1999 Microchip Technology Inc.

Using MPASM with Windows and MPLAB

M
PA

S
M

1

Figure 4.7: Install Language Tool Dialog - MPASM

If you are using MPASM.EXE and get a message from DOS saying that you
have run out of environment space, use Microsoft Windows Internet Explorer
to select the MPASM.EXE file in the MPLAB installation directory, and click on
the right mouse button to bring up the Properties dialog.

Figure 4.8: Properties Dialog - MPASM.EXE

Increase the size of the Initial Environment. Usually a setting of 2048 will
suffice, but if you have a lot of applications that set variables and add to your
path statement in your AUTOEXEC.BAT file, you may need to make it larger.
 1999 Microchip Technology Inc. DS33014G-page 33

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 34 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

M
PA

S
M

1

MPLINK and MPLIB

Chapter 5. Directive Language
5.1 Introduction
This chapter describes the MPASM directive language.

Directives are assembler commands that appear in the source code but are
not translated directly into opcodes. They are used to control the assembler:
its input, output, and data allocation.

Many of the assembler directives have alternate names and formats. These
may exist to provide backward compatibility with previous assemblers from
Microchip and to be compatible with individual programming practices. If
portable code is desired, it is recommended that programs be written using
the specifications contained within this document.

5.2 Highlights
There are five basic types of directives provided by MPASM:

• Control Directives – Control directives permit sections of conditionally
assembled code.

• Data Directives – Data Directives are those that control the allocation of
memory and provide a way to refer to data items symbolically, that is, by
meaningful names.

• Listing Directives – Listing Directives are those directives that control
the MPASM listing file format. They allow the specification of titles, pag-
ination, and other listing control.

• Macro Directives – These directives control the execution and data allo-
cation within macro body definitions.

• Object File Directives – These directives are used only when creating
an object file.

5.3 Directive Summary
Table 5.1 contains a summary of directives supported by MPASM. The
remainder of this chapter is dedicated to providing a detailed description of
the directives supported by MPASM. Each definition will show:

• Syntax

• Description

• Example
 1999 Microchip Technology Inc. DS33014G-page 35

MPASM User’s Guide with MPLINK and MPLIB
Table 5.1: Directive Summary

Directive Description Syntax

_ _BADRAM Specify invalid RAM
locations

_ _badram <expr>[-<expr>][, <expr>[-<expr>]]

BANKISEL Generate RAM bank
selecting code for indirect
addressing

bankisel <label>

BANKSEL Generate RAM bank
selecting code

banksel <label>

CBLOCK Define a Block of Constants cblock [<expr>]

CODE Begins executable code
section

[<name>] code [<address>]

_ _CONFIG Specify configuration bits _ _config <expr> OR _ _config <addr>, <expr>

CONSTANT Declare Symbol Constant constant <label>[=<expr>,...,<label>[=<expr>]]

DA Store Strings in Program
Memory

[<label>] da <expr> [, <expr2>, ..., <exprn>]

DATA Create Numeric and Text
Data

[<label>] data <expr>,[,<expr>,...,<expr>]
[<label>] data "<text_string>"[,"<text_string>",...]

DB Declare Data of One Byte [<label>] db <expr>[,<expr>,...,<expr>]
[<label>] db "<text_string>"[,"<text_string>",...]

DE Define EEPROM Data [<label>] de <expr>[,<expr>,...,<expr>]
[<label>] de "<text_string>"[,"<text_string>",...]

#DEFINE Define a Text Substitution
Label

define <name> [<value>]
define <name> [<arg>,...,<arg>] <value>

DT Define Table [<label>] dt <expr>[,<expr>,...,<expr>]
[<label>] dt "<text_string>"[,"<text_string>",...]

DW Declare Data of One Word [<label>] dw <expr>[,<expr>,...,<expr>]
[<label>] dw "<text_string>"[,"<text_string>",...]

ELSE Begin Alternative Assembly
Block to IF

else

END End Program Block end

ENDC End an Automatic Constant
Block

endc

ENDIF End conditional Assembly
Block

endif

ENDM End a Macro Definition endm

ENDW End a While Loop endw

EQU Define an Assembly
Constant

<label> equ <expr>

ERROR Issue an Error Message error "<text_string>"

ERRORLEVEL Set Error Level errorlevel 0|1|2| <+|-><message number>
DS33014G-page 36 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

EXITM Exit from a Macro exitm

EXPAND Expand Macro Listing expand

EXTERN Declares an external label extern <label>[,<label>]

FILL Fill Memory [<label>] fill <expr>, <count>

GLOBAL Exports a defined label global <label>[,<label>]

IDATA Begins initialized data
section

[<name>] idata [<address>]

_ _IDLOCS Specify ID locations _ _idlocs <expr>

IF Begin Conditionally
Assembled Code Block

if <expr>

IFDEF Execute If Symbol has Been
Defined

ifdef <label>

IFNDEF Execute If Symbol has not
Been Defined

ifndef <label>

#INCLUDE Include Additional Source
File

include <<include_file>> |"<include_file>"

LIST Listing Options list [<list_option>,...,<list_option>]

LOCAL Declare Local Macro
Variable

local <label>[,<label>]

MACRO Declare Macro Definition <label> macro [<arg>,...,<arg>]

_ _MAXRAM Specify maximum RAM
address

_ _maxram <expr>

MESSG Create User Defined
Message

messg "<message_text>"

NOEXPAND Turn off Macro Expansion noexpand

NOLIST Turn off Listing Output nolist

ORG Set Program Origin <label> org <expr>

PAGE Insert Listing Page Eject page

PAGESEL Generate ROM page
selecting code

pagesel <label>

PROCESSOR Set Processor Type processor <processsor_type>

RADIX Specify Default Radix radix <default_radix>

RES Reserve Memory [<label>] res <mem_units>

SET Define an Assembler
Variable

<label> set <expr>

SPACE Insert Blank Listing Lines space <expr>

SUBTITLE Specify Program Subtitle subtitle "<sub_text>"

Table 5.1: Directive Summary (Continued)

Directive Description Syntax
 1999 Microchip Technology Inc. DS33014G-page 37

MPASM User’s Guide with MPLINK and MPLIB
TITLE Specify Program Title title "<title_text>"

UDATA Begins uninitialized data
section

[<name>] udata [<address>]

UDATA_ACS Begins access uninitialized
data section

[<name>] udata_acs [<address>]

UDATA_OVR Begins overlayed
uninitialized data section

[<name>] udata_ovr [<address>]

UDATA_SHR Begins shared uninitialized
data section

[<name>] udata_shr [<address>]

#UNDEFINE Delete a Substitution Label #undefine <label>

VARIABLE Declare Symbol Variable variable <label>[=<expr>,...,<label>[=<expr>]]

WHILE Perform Loop While
Condition is True

while <expr>

Table 5.1: Directive Summary (Continued)

Directive Description Syntax
DS33014G-page 38 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.4 _ _BADRAM – Identify Unimplemented RAM

5.4.1 Syntax
_ _badram <expr>[-<expr>][, <expr>[-<expr>]]

5.4.2 Description
The _ _MAXRAM and _ _BADRAM directives together flag accesses to
unimplemented registers. _ _BADRAM defines the locations of invalid RAM
addresses. This directive is designed for use with the _ _MAXRAM directive. A
_ _MAXRAM directive must proceed any _ _BADRAM directive. Each <expr>
must be less than or equal to the value specified by _ _MAXRAM. Once the
_ _MAXRAM directive is used, strict RAM address checking is enabled, using
the RAM map specified by _ _BADRAM. To specify a range of invalid
locations, use the syntax <minloc> - <maxloc>.

5.4.3 Example
See the example for _ _MAXRAM.

5.4.4 See Also
_ _MAXRAM

5.5 BANKISEL – Generate Indirect Bank Selecting
Code

5.5.1 Syntax
bankisel <label>

5.5.2 Description
For use when generating an object file. This directive is an instruction to the
linker to generate the appropriate bank selecting code for an indirect access
of the address specified by <label>. Only one <label> should be specified.
No operations can be performed on <label>. <label> must have been
previously defined.

The linker will generate the appropriate bank selecting code. For 14-bit core
devices, the appropriate bit set/clear instruction on the IRP bit in the STATUS
register will be generated. For the 16-bit core devices, MOVLB or MOVLR will
be generated. If the user can completely specify the indirect address without
these instructions, no code will be generated.

For more information, refer to Chapter 6.
 1999 Microchip Technology Inc. DS33014G-page 39

MPASM User’s Guide with MPLINK and MPLIB
5.5.3 Example
movlw Var1
movwf FSR
bankisel Var1
 ...
movwf INDF

5.5.4 See Also
BANKSEL PAGESEL

5.6 BANKSEL – Generate Bank Selecting Code

5.6.1 Syntax
banksel <label>

5.6.2 Description
For use when generating an object file. This directive is an instruction to the
linker to generate bank selecting code to set the bank to the bank containing
the designated <label>. Only one <label> should be specified. No
operations can be performed on <label>. <label> must have been
previously defined.

The linker will generate the appropriate bank selecting code. For 12-bit core
devices, the appropriate bit set/clear instructions on the FSR will be
generated. For 14-bit devices, bit set/clear instructions on the STATUS
register will be generated. For the 16-bit core devices, MOVLB or MOVLR will
be generated. For the enhanced 16-bit core devices, MOVLB will be
generated. If the device contains only one bank of RAM, no instructions will
be generated.

For more information, refer to Chapter 6.

5.6.3 Example
banksel Var1
movwf Var1

5.6.4 See Also
BANKISEL PAGESEL
DS33014G-page 40 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.7 CBLOCK – Define a Block of Constants

5.7.1 Syntax
cblock [<expr>]
 <label>[:<increment>][,<label>[:<increment>]]
endc

5.7.2 Description
Define a list of named constants. Each <label> is assigned a value of one
higher than the previous <label>. The purpose of this directive is to assign
address offsets to many labels. The list of names end when an ENDC directive
is encountered.

<expr> indicates the starting value for the first name in the block. If no
expression is found, the first name will receive a value one higher than the
final name in the previous CBLOCK. If the first CBLOCK in the source file has no
<expr>, assigned values start with zero.

If <increment> is specified, then the next <label> is assigned the value of
<increment> higher than the previous <label>.

Multiple names may be given on a line, separated by commas.

cblock is useful for defining constants in program and data memory.

5.7.3 Example
cblock 0x20 ; name_1 will be
 ; assigned 20
 name_1, name_2 ; name_2, 21 and so on
 name_3, name_4 ; name_4 is assigned 23.
endc
cblock 0x30
 TwoByteVar: 0, TwoByteHigh, TwoByteLow
 Queue: QUEUE_SIZE
 QueueHead, QueueTail
 Double1:2, Double2:2
endc

5.7.4 See Also
ENDC

5.8 CODE – Begin an Object File Code Section

5.8.1 Syntax
[<label>] code [<ROM address>]
 1999 Microchip Technology Inc. DS33014G-page 41

MPASM User’s Guide with MPLINK and MPLIB

SHR
5.8.2 Description
For use when generating an object file. Declares the beginning of a section of
program code. If <label> is not specified, the section is named .code. The
starting address is initialized to the specified address or will be assigned at link
time if no address is specified.

For more information, refer to Chapter 6.

5.8.3 Example
RESET code H’01FF’
 goto START

5.8.4 See Also
EXTERN GLOBAL IDATA UDATA UDATA_ACS UDATA_OVR UDATA_

5.9 _ _CONFIG – Set Processor Configuration Bits

5.9.1 Syntax
_ _config <expr> OR _ _config <addr>, <expr>

5.9.2 Description
Sets the processor’s configuration bits to the value described by <expr>. For
PIC18CXX devices, the address of a valid configuration byte must also be
specified by <addr>. Refer to the PICmicro Microcontroller Data Book for a
description of the configuration bits for each processor.

Before this directive is used, the processor must be declared through the
command line, the LIST directive, or the PROCESSOR directive. If this directive is
used with the PIC17CXX family, the hex file output format must be set to INHX32
through the command line or the LIST directive.

5.9.3 Example
list p=17c42,f=INHX32
_ _config H’FFFF’ ;Default configuration bits

5.9.4 See Also
_ _IDLOCS LIST PROCESSOR

Note: Two sections in the same source file may not have the same name.
DS33014G-page 42 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.10 CONSTANT – Declare Symbol Constant

5.10.1 Syntax
constant <label>=<expr> [...,<label>=<expr>]

5.10.2 Description
Creates symbols for use in MPASM expressions. Constants may not be reset
after having once been initialized, and the expression must be fully resolvable
at the time of the assignment. This is the principal difference between
symbols declared as CONSTANT and those declared as VARIABLE, or created
by the SET directive. Otherwise, constants and variables may be used
interchangeably in expressions.

5.10.3 Example
variable RecLength=64 ; Set Default
 ; RecLength
constant BufLength=512 ; Init BufLength
 . ; RecLength may
 . ; be reset later
 . ; in RecLength=128
 . ;
constant MaxMem=RecLength+BufLength ;CalcMaxMem

5.10.4 See Also
SET VARIABLE
 1999 Microchip Technology Inc. DS33014G-page 43

MPASM User’s Guide with MPLINK and MPLIB
5.11 DA – Store Strings in Program Memory

5.11.1 Syntax
[<label>] da <expr> [, <expr2>, ..., <exprn>]

5.11.2 Description
Generates a packed 14-bit number representing two 7-bit ASCII characters.
This is useful for storing strings in memory for the PICmicro Flash ROM
devices.

5.11.3 Examples
da "abcdef"

will put 30E2 31E4 32E6 3380 into program memory

da "12345678" ,0

will put 18B2 19B4 1AB6 0000 into program memory

da 0xFFFF

will put 0x3FFF into program memory

5.12 DATA – Create Numeric and Text Data

5.12.1 Syntax
[<label>] data <expr>,[,<expr>,...,<expr>]
[<label>] data "<text_string>"[,"<text_string>",...]

5.12.2 Description
Initialize one or more words of program memory with data. The data may be in
the form of constants, relocatable or external labels, or expressions of any of
the above. The data may also consist of ASCII character strings,
<text_string>, enclosed in single quotes for one character or double
quotes for strings. Single character items are placed into the low byte of the
word, while strings are packed two to a word. If an odd number of characters
are given in a string, the final byte is zero. On all families except the
PIC18CXX, the first character is in the most significant byte of the word. On
the PIC18CXX, the first character is in the least significant byte of the word.

When generating an object file, this directive can also be used to declare
initialized data values. Refer to the IDATA directive for more information.
DS33014G-page 44 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.12.3 Example
data reloc_label+10 ; constants
data 1,2,ext_label ; constants, externals
data "testing 1,2,3" ; text string
data ‘N’ ; single character
data start_of_program ; relocatable label

5.12.4 See Also
DB DE DT DW IDATA

5.13 DB – Declare Data of One Byte

5.13.1 Syntax
[<label>] db <expr>[,<expr>,...,<expr>]

5.13.2 Description
Reserve program memory words with packed 8-bit values. Multiple
expressions continue to fill bytes consecutively until the end of expressions.
Should there be an odd number of expressions, the last byte will be zero.

When generating an object file, this directive can also be used to declare
initialized data values. Refer to the IDATA directive for more information.

5.13.3 Example
db ’t’, 0x0f, ’e’, 0x0f, ’s’, 0x0f, ’t’, ’\n’

5.13.4 See Also
DATA DE DT DW IDATA

5.14 DE – Declare EEPROM Data Byte

5.14.1 Syntax
[<label>] de <expr> [, <expr>, ..., <expr>]

5.14.2 Description
Reserve memory words with 8-bit data. Each <expr> must evaluate to an
8-bit value. The upper bits of the program word are zeroes. Each character in
a string is stored in a separate word.

Although designed for initializing EEPROM data on the PIC16C8X, the
directive can be used at any location for any processor.
 1999 Microchip Technology Inc. DS33014G-page 45

MPASM User’s Guide with MPLINK and MPLIB
5.14.3 Example
org H’2100’ ; Initialize EEPROM Data
de "My Program, v1.0", 0

5.14.4 See Also
DATA DB DT DW

5.15 #DEFINE – Define a Text Substitution Label

5.15.1 Syntax
#define <name> [<string>]

5.15.2 Description
This directive defines a text substitution string. Wherever <name> is
encountered in the assembly code, <string> will be substituted.

Using the directive with no <string> causes a definition of <name> to be
noted internally and may be tested for using the IFDEF directive.

This directive emulates the ANSI ’C’ standard for #define. Symbols defined
with this method are not available for viewing using MPLAB.

5.15.3 Example
#define length 20
#define control 0x19,7
#define position(X,Y,Z) (Y-(2 * Z +X))
 :
 :
test_label dw position(1, length, 512)
 bsf control ; set bit 7 in f19

5.15.4 See Also
#UNDEFINE IFDEF IFNDEF
DS33014G-page 46 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.16 DT – Define Table

5.16.1 Syntax
[<label>] dt <expr> [, <expr>, ..., <expr>]

5.16.2 Description
Generates a series of RETLW instructions, one instruction for each <expr>.
Each <expr> must be an 8-bit value. Each character in a string is stored in
its own RETLW instruction.

5.16.3 Example
dt "A Message", 0
dt FirstValue, SecondValue, EndOfValues

5.16.4 See Also
DATA DB DE DW

5.17 DW – Declare Data of One Word

5.17.1 Syntax
[<label>] dw <expr>[,<expr>,...,<expr>]

5.17.2 Description
Reserve program memory words for data, initializing that space to specific
values. For PIC18CXX devices, DW functions like DB. Values are stored into
successive memory locations and the location counter is incremented by one.
Expressions may be literal strings and are stored as described in the DATA
directive.

When generating an object file, this directive can also be used to declare
initialized data values. Refer to the IDATA directive for more information.

5.17.3 Example
dw 39, "diagnostic 39", (d_list*2+d_offset)
dw diagbase-1

5.17.4 See Also
DATA DB IDATA
 1999 Microchip Technology Inc. DS33014G-page 47

MPASM User’s Guide with MPLINK and MPLIB
5.18 ELSE – Begin Alternative Assembly Block to IF

5.18.1 Syntax
else

5.18.2 Description
Used in conjunction with an IF directive to provide an alternative path of
assembly code should the IF evaluate to false. ELSE may be used inside a
regular program block or macro.

5.18.3 Example
speed macro rate
 if rate < 50
 dw slow
 else
 dw fast
 endif
 endm

5.18.4 See Also
ENDIF IF

5.19 END – End Program Block

5.19.1 Syntax
end

5.19.2 Description
Indicates the end of the program.

5.19.3 Example
list p=17c42
: ; executable code
: ;
end ; end of instructions
DS33014G-page 48 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.20 ENDC – End an Automatic Constant Block

5.20.1 Syntax
endc

5.20.2 Description
ENDC terminates the end of a CBLOCK list. It must be supplied to terminate the
list.

5.20.3 See Also
CBLOCK

5.21 ENDIF – End Conditional Assembly Block

5.21.1 Syntax
endif

5.21.2 Description
This directive marks the end of a conditional assembly block. ENDIF may be
used inside a regular program block or macro.

5.21.3 See Also
ELSE IF

5.22 ENDM – End a Macro Definition

5.22.1 Syntax
endm

5.22.2 Description
Terminates a macro definition begun with MACRO.

5.22.3 Example
make_table macro arg1, arg2
 dw arg1, 0 ; null terminate table name
 res arg2 ; reserve storage
 endm
 1999 Microchip Technology Inc. DS33014G-page 49

MPASM User’s Guide with MPLINK and MPLIB
5.22.4 See Also
MACRO EXITM

5.23 ENDW – End a While Loop

5.23.1 Syntax
endw

5.23.2 Description
ENDW terminates a WHILE loop. As long as the condition specified by the
WHILE directive remains true, the source code between the WHILE directive
and the ENDW directive will be repeatedly expanded in the assembly source
code stream. This directive may be used inside a regular program block or
macro.

5.23.3 Example
See the example for WHILE

5.23.4 See Also
WHILE

5.24 EQU – Define an Assembler Constant

5.24.1 Syntax
<label> equ <expr>

5.24.2 Description
The value of <expr> is assigned to <label>.

5.24.3 Example
four equ 4 ; assigned the numeric value of 4
 ; to label four

5.24.4 See Also
SET
DS33014G-page 50 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.25 ERROR – Issue an Error Message

5.25.1 Syntax
error "<text_string>"

5.25.2 Description
<text_string> is printed in a format identical to any MPASM error
message. <text_string> may be from 1 to 80 characters.

5.25.3 Example
error_checking macro arg1
 if arg1 >= 55 ; if arg is out of range
 error "error_checking-01 arg out of range"
 endif
endm

5.25.4 See Also
MESSG

5.26 ERRORLEVEL – Set Message Level

5.26.1 Syntax
errorlevel {0|1|2|+<msgnum>|-<msgnum>} [, ...]

5.26.2 Description
Sets the types of messages that are printed in the listing file and error file.

The values for <msgnum> are in Appendix C. Error messages cannot be
disabled. The setting of 0, 1, or 2 overrides individual message disabling or
enabling.

5.26.3 Example
errorlevel 1, -202

Setting Affect

0 Messages, warnings, and errors printed
1 Warnings and errors printed
2 Errors printed
-<msgnum> Inhibits printing of message <msgnum>
+<msgnum> Enables printing of message <msgnum>
 1999 Microchip Technology Inc. DS33014G-page 51

MPASM User’s Guide with MPLINK and MPLIB
5.26.4 See Also
LIST

5.27 EXITM – Exit from a Macro

5.27.1 Syntax
exitm

5.27.2 Description
Force immediate return from macro expansion during assembly. The effect is
the same as if an ENDM directive had been encountered.

5.27.3 Example
test macro filereg
 if filereg == 1 ; check for valid file
 exitm
 else
 error "bad file assignment"
 endif
endm

5.27.4 See Also
ENDM MACRO

5.28 EXPAND – Expand Macro Listing

5.28.1 Syntax
expand

5.28.2 Description
Expand all macros in the listing file. This directive is roughly equivalent to the
/m MPASM command line option, but may be disabled by the occurrence of a
subsequent NOEXPAND.

5.28.3 See Also
MACRO NOEXPAND
DS33014G-page 52 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.29 EXTERN – Declare an Externally Defined Label

5.29.1 Syntax
extern <label> [, <label>...]

5.29.2 Description
For use when generating an object file. Declares symbol names that may be
used in the current module but are defined as global in a different module.
The EXTERN statement must be included before the <label> is used. At
least one label must be specified on the line. If <label> is defined in the
current module, MPASM will generate a duplicate label error.

For more information, refer to Chapter 6.

5.29.3 Example
extern Function
...
call Function

5.29.4 See Also
GLOBAL IDATA TEXT UDATA UDATA_ACS UDATA_OVR UDATA_SHR

5.30 FILL – Specify Memory Fill Value

5.30.1 Syntax
[<label>] fill <expr>,<count>

5.30.2 Description
Generates <count> occurrences of the program word or byte (PIC18CXX
devices), <expr>. If bounded by parentheses, <expr> can be an assembler
instruction.

5.30.3 Example
fill 0x1009, 5 ; fill with a constant
fill (GOTO RESET_VECTOR), NEXT_BLOCK-$

5.30.4 See Also
DATA DW ORG
 1999 Microchip Technology Inc. DS33014G-page 53

MPASM User’s Guide with MPLINK and MPLIB
5.31 GLOBAL – Export a Label

5.31.1 Syntax
global <label> [, <label>...]

5.31.2 Description
For use when generating an object file. Declares symbol names that are
defined in the current module and should be available to other modules. The
GLOBAL statement must be after the <label> is defined. At least one label
must be specified on the line.

For more information, refer to Chapter 6.

5.31.3 Example
 udata
Var1 res 1
Var2 res 1
 global Var1, Var2
 code
AddThree
 global AddThree
 addlw 3
 return

5.31.4 See Also
EXTERN IDATA TEXT UDATA UDATA_ACS UDATA_OVR UDATA_SHR

5.32 IDATA – Begin an Object File Initialized Data
Section

5.32.1 Syntax
[<label>] idata [<RAM address>]

5.32.2 Description
For use when generating an object file. Declares the beginning of a section of
initialized data. If <label> is not specified, the section is named .idata. The
starting address is initialized to the specified address or will be assigned at
link time if no address is specified. No code can be generated in this segment.
DS33014G-page 54 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

SHR
The linker will generate a look-up table entry for each byte specified in an idata
section. The user must then link or include the appropriate initialization code.
See Chapter 9 for examples of initialization codes for various PICmicro families.
Note that this directive is not available for 12-bit core devices.

The RES, DB and DW directives may be used to reserve space for variables.
RES will generate an initial value of zero. DB will initialize successive bytes of
RAM. DW will initialize successive bytes of RAM, one word at a time, in low-
byte/high-byte order.

For more information, refer to Chapter 6.

5.32.3 Example
 idata
LimitL dw 0
LimitH dw D’300’
Gain dw D’5’
Flags db 0
String db ‘Hi there!’

5.32.4 See Also
EXTERN GLOBAL TEXT UDATA UDATA_ACS UDATA_OVR UDATA_

5.33 _ _IDLOCS – Set Processor ID Locations

5.33.1 Syntax
_ _idlocs <expr> or _ _idlocs <expr1>, <expr2>

5.33.2 Description
For PIC12CXX, PIC14000, and PIC16CXX devices, _ _idlocs sets the four
ID locations to the hexadecimal value of <expr>. For PIC18CXX devices,
_ _ idlocs sets the two-byte device ID <expr1> to the hexadecimal value of
<expr2>. This directive is not valid for the PIC17CXX family.

For example, if <expr> evaluates to 1AF, the first (lowest address) ID location
is zero, the second is one, the third is ten, and the fourth is fifteen.

Before this directive is used, the processor must be declared through the
command line, the LIST directive, or the PROCESSOR directive.

5.33.3 Example
_ _idlocs H’1234’

5.33.4 See Also
LIST PROCESSOR _ _CONFIG
 1999 Microchip Technology Inc. DS33014G-page 55

MPASM User’s Guide with MPLINK and MPLIB
5.34 IF – Begin Conditionally Assembled Code Block

5.34.1 Syntax
if <expr>

5.34.2 Description
Begin execution of a conditional assembly block. If <expr> evaluates to true,
the code immediately following the IF will assemble. Otherwise, subsequent
code is skipped until an ELSE directive or an ENDIF directive is encountered.

An expression that evaluates to zero is considered logically FALSE. An
expression that evaluates to any other value is considered logically TRUE. The
IF and WHILE directives operate on the logical value of an expression. A
relational TRUE expression is guaranteed to return a nonzero value, FALSE a
value of zero.

5.34.3 Example
if version == 100; check current version
 movlw 0x0a
 movwf io_1
else
 movlw 0x01a
 movwf io_2
endif

5.34.4 See Also
ELSE ENDIF

5.35 IFDEF – Execute If Symbol has Been Defined

5.35.1 Syntax
ifdef <label>

5.35.2 Description
If <label> has been previously defined, usually by issuing a #DEFINE
directive or by setting the value on the MPASM command line, the conditional
path is taken. Assembly will continue until a matching ELSE or ENDIF
directive is encountered.
DS33014G-page 56 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.35.3 Example
#define testing 1 ; set testing "on"
:
:
ifdef testing
 <execute test code> ; this path would
endif ; be executed.

5.35.4 See Also
#DEFINE ELSE ENDIF IFNDEF #UNDEFINE

5.36 IFNDEF – Execute If Symbol has not Been
Defined

5.36.1 Syntax
ifndef <label>

5.36.2 Description
If <label> has not been previously defined, or has been undefined by
issuing an #UNDEFINE directive, then the code following the directive will be
assembled. Assembly will be enabled or disabled until the next matching
ELSE or ENDIF directive is encountered.

5.36.3 Example
#define testing1 ; set testing on
 :
 :
#undefine testing1 ; set testing off
 ifndef testing ; if not in testing mode
 : ; execute
 : ; this path
 endif ;
 ;
 end ; end of source

5.36.4 See Also
#DEFINE ELSE ENDIF IFDEF INE #UNDEF
 1999 Microchip Technology Inc. DS33014G-page 57

MPASM User’s Guide with MPLINK and MPLIB
5.37 INCLUDE – Include Additional Source File

5.37.1 Syntax
include <<include_file>>
include "<include_file>"

5.37.2 Description
The specified file is read in as source code. The effect is the same as if the
entire text of the included file were inserted into the file at the location of the
include statement. Upon end-of-file, source code assembly will resume from
the original source file. Up to six levels of nesting are permitted.
<include_file> may be enclosed in quotes or angle brackets. If a fully
qualified path is specified, only that path will be searched. Otherwise, the
search order is: current working directory, source file directory, MPASM
executable directory.

5.37.3 Example
include "c:\sys\sysdefs.inc" ; system defs
include <regs.h> ; register defs

5.38 LIST – Listing Options

5.38.1 Syntax
list [<list_option>, ..., <list_option>]

5.38.2 Description
Occurring on a line by itself, the LIST directive has the effect of turning listing
output on, if it had been previously turned off. Otherwise, one of the following
list options can be supplied to control the assembly process or format the
listing file:

Table 5.2: List Directive Options

 Option Default Description

b=nnn 8 Set tab spaces.

c=nnn 132 Set column width.

f=<format> INHX8M Set the hex file output. <format> can be
INHX32, INHX8M, or INHX8S.

free FIXED Use free-format parser. Provided for
backward compatibility.

fixed FIXED Use fixed-format parser.

mm={ON|OFF} On Print memory map in list file.
DS33014G-page 58 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.38.3 Example
list p=17c42, f=INHX32, r=DEC

5.38.4 See Also
ERRORLEVEL EXPAND NOEXPAND NOLIST PROCESSOR RADIX

5.39 LOCAL – Declare Local Macro Variable

5.39.1 Syntax
local <label>[,<label>...]

5.39.2 Description
Declares that the specified data elements are to be considered in local
context to the macro. <label> may be identical to another label declared
outside the macro definition; there will be no conflict between the two.

If the macro is called recursively, each invocation will have its own local copy.

5.39.3 Example
<main code segment>
 :
 :
len equ 10 ; global version
size equ 20 ; note that a local variable
 ; may now be created and modified
test macro size ;
 local len, label ; local len and label
len set size ; modify local len
label res len ; reserve buffer
len set len-20 ;
endm ; end macro

n=nnn 60 Set lines per page.

p=<type> None Set processor type; for example, PIC16C54.

r=<radix> hex Set default radix: hex, dec, oct.

st={ON|OFF} On Print symbol table in list file.

t={ON|OFF} Off Truncate lines of listing (otherwise wrap).

w={0|1|2} 0 Set the message level. See ERRORLEVEL.

x={ON|OFF} On Turn macro expansion on or off.

Note: All LIST options are evaluated as decimal numbers.

Table 5.2: List Directive Options (Continued)

 Option Default Description
 1999 Microchip Technology Inc. DS33014G-page 59

MPASM User’s Guide with MPLINK and MPLIB
5.39.4 See Also
ENDM MACRO

5.40 MACRO – Declare Macro Definition

5.40.1 Syntax
<label> macro [<arg>, ..., <arg>]

5.40.2 Description
A macro is a sequence of instructions that can be inserted in the assembly
source code by using a single macro call. The macro must first be defined,
then it can be referred to in subsequent source code.

A macro can call another macro, or may call itself recursively.

Please refer to Chapter 5, “Macro Language” for more information.

5.40.3 Example
Read macro device, buffer, count
 movlw device
 movwf ram_20
 movlw buffer ; buffer address
 movwf ram_21
 movlw count ; byte count
 call sys_21 ; read file call
endm

5.40.4 See Also
ELSE ENDIF ENDM EXITM IF LOCAL

5.41 _ _MAXRAM – Define Maximum RAM Location

5.41.1 Syntax
_ _maxram <expr>

5.41.2 Description
The _ _MAXRAM and _ _BADRAM directives together flag accesses to
unimplemented registers. _ _MAXRAM defines the absolute maximum valid
RAM address and initializes the map of valid RAM addresses to all addresses
valid at and below <expr>. <expr> must be greater than or equal to the
maximum page 0 RAM address and less than 1000H. This directive is
DS33014G-page 60 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

designed for use with the _ _BADRAM directive. Once the _ _MAXRAM
directive is used, strict RAM address checking is enabled, using the RAM map
specified by _ _BADRAM.

_ _MAXRAM can be used more than once in a source file. Each use redefines
the maximum valid RAM address and resets the RAM map to all locations.

5.41.3 Example
list p=16c622
_ _maxram H’0BF’
_ _badram H’07’-H’09’, H’0D’-H’1E’
_ _badram H’87’-H’89’, H’8D’, H’8F’-H’9E’
movwf H’07’ ; Generates invalid RAM warning
movwf H’87’ ; Generates invalid RAM warning
 ; and truncation message

5.41.4 See Also
_ _BADRAM

5.42 MESSG – Create User Defined Message

5.42.1 Syntax
messg "<message_text>"

5.42.2 Description
Causes an informational message to be printed in the listing file. The
message text can be up to 80 characters. Issuing a MESSG directive does not
set any error return codes.

5.42.3 Example
mssg_macro macro
 messg "mssg_macro-001 invoked without argument"
endm

5.42.4 See Also
ERROR
 1999 Microchip Technology Inc. DS33014G-page 61

MPASM User’s Guide with MPLINK and MPLIB
5.43 NOEXPAND – Turn off Macro Expansion

5.43.1 Syntax
noexpand

5.43.2 Description
Turns off macro expansion in the listing file.

5.43.3 See Also
EXPAND

5.44 NOLIST – Turn off Listing Output

5.44.1 Syntax
nolist

5.44.2 Description
Turn off listing file output.

5.44.3 See Also
LIST

5.45 ORG – Set Program Origin

5.45.1 Syntax
[<label>] org <expr>

5.45.2 Description
Set the program origin for subsequent code at the address defined in
<expr>. If <label> is specified, it will be given the value of the <expr>. If
no ORG is specified, code generation will begin at address zero.

For PIC18CXX devices, only even <expr> values are allowed.

This directive may not be used when generating an object file.
DS33014G-page 62 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.45.3 Example
int_1 org 0x20
 ; Vector 20 code goes here
int_2 org int_1+0x10
 ; Vector 30 code goes here

5.45.4 See Also
FILL RES

5.46 PAGE – Insert Listing Page Eject

5.46.1 Syntax
page

5.46.2 Description
Inserts a page eject into the listing file.

5.46.3 See Also
LIST SUBTITLE TITLE

5.47 PAGESEL – Generate Page Selecting Code

5.47.1 Syntax
pagesel <label>

5.47.2 Description
For use when generating an object file. An instruction to the linker to generate
page selecting code to set the page bits to the page containing the designated
<label>. Only one <label> should be specified. No operations can be
performed on <label>. <label> must have been previously defined.

The linker will generate the appropriate page selecting code. For 12-bit core
devices, the appropriate bit set/clear instructions on the STATUS register will
be generated. For 14-bit and 16-bit core devices, MOVLW and MOVWF
instructions will be generated to modify the PCLATH. If the device contains
only one page of program memory, no code will be generated.

For PIC18CXX devices, this command will do nothing.

For more information, refer to Chapter 6.
 1999 Microchip Technology Inc. DS33014G-page 63

MPASM User’s Guide with MPLINK and MPLIB
5.47.3 Example
pagesel GotoDest
goto GotoDest
....
pagesel CallDest
call CallDest

5.47.4 See Also
BANKISEL BANKSEL

5.48 PROCESSOR – Set Processor Type

5.48.1 Syntax
processor <processor_type>

5.48.2 Description
Sets the processor type to <processor_type>.

5.48.3 Example
processor 16C54

5.48.4 See Also
LIST

5.49 RADIX – Specify Default Radix

5.49.1 Syntax
radix <default_radix>

5.49.2 Description
Sets the default radix for data expressions. The default radix is hex. Valid
radix values are: hex, dec, or oct.

5.49.3 Example
radix dec

5.49.4 See Also
LIST
DS33014G-page 64 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.50 RES – Reserve Memory

5.50.1 Syntax
[<label>] res <mem_units>

5.50.2 Description
Causes the memory location pointer to be advanced from its current location
by the value specified in <mem_units>. In non-relocatable code, <label> is
assumed to be a program memory address. In relocatable code (using
MPLINK), res can also be used to reserve data storage.

Address locations are defined in words for 12-, 14- and 16-bit PICmicros, and
bytes for enhanced 16-bit PICmicros.

5.50.3 Example
buffer res 64 ; reserve 64 address locations of storage

5.50.4 See Also
FILL ORG

5.51 SET – Define an Assembler Variable

5.51.1 Syntax
<label> set <expr>

5.51.2 Description
<label> is assigned the value of the valid MPASM expression specified by
<expr>. The SET directive is functionally equivalent to the EQU directive
except that SET values may be subsequently altered by other SET directives.

5.51.3 Example
area set 0
width set 0x12
length set 0x14
area set length * width
length set length + 1

5.51.4 See Also
EQU VARIABLE
 1999 Microchip Technology Inc. DS33014G-page 65

MPASM User’s Guide with MPLINK and MPLIB
5.52 SPACE – Insert Blank Listing Lines

5.52.1 Syntax
space <expr>

5.52.2 Description
Insert <expr> number of blank lines into the listing file.

5.52.3 Example
space 3 ;Inserts three blank lines

5.52.4 See Also
LIST

5.53 SUBTITLE – Specify Program Subtitle

5.53.1 Syntax
subtitle "<sub_text>"

5.53.2 Description
<sub_text> is an ASCII string enclosed in double quotes, 60 characters or
less in length. This directive establishes a second program header line for use
as a subtitle in the listing output.

5.53.3 Example
subtitle "diagnostic section"

5.53.4 See Also
TITLE

5.54 TITLE – Specify Program Title

5.54.1 Syntax
title "<title_text>"
DS33014G-page 66 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

5.54.2 Description
<title_text> is a printable ASCII string enclosed in double quotes. It must
be 60 characters or less. This directive establishes the text to be used in the top
line of each page in the listing file.

5.54.3 Example
title "operational code, rev 5.0"

5.54.4 See Also
LIST SUBTITLE

5.55 UDATA – Begin an Object File Uninitialized Data
Section

5.55.1 Syntax
[<label>] udata [<RAM address>]

5.55.2 Description
For use when generating an object file. Declares the beginning of a section of
uninitialized data. If <label> is not specified, the section is named .udata.
The starting address is initialized to the specified address or will be assigned at
link time if no address is specified. No code can be generated in this segment.
The RES directive should be used to reserve space for data.

For more information, refer to Chapter 6.

5.55.3 Example
 udata
Var1 res 1
Double res 2

5.55.4 See Also
EXTERN GLOBAL IDATA UDATA_ACS UDATA_OVR UDATA_SHR TEXT

Note: Two sections in the same source file may not have the same name.
 1999 Microchip Technology Inc. DS33014G-page 67

MPASM User’s Guide with MPLINK and MPLIB
5.56 UDATA_ACS – Begin an Object File Access
Uninitialized Data Section

5.56.1 Syntax
[<label>] udata_acs [<RAM address>]

5.56.2 Description
For use when generating an object file. Declares the beginning of a section of
access uninitialized data. If <label> is not specified, the section is
named .udata_acs. The starting address is initialized to the specified
address or will be assigned at link time if no address is specified. This
directive is used to declare variables that are allocated in access RAM of
PIC18CXX devices. No code can be generated in this segment. The RES
directive should be used to reserve space for data.

For more information, refer to Chapter 6.

5.56.3 Example
 udata
Var1 res 1
Double res 2

5.56.4 See Also
EXTERN GLOBAL IDATA UDATA UDATA_OVR UDATA_SHR TEXT

5.57 UDATA_OVR – Begin an Object File Overlayed
Uninitialized Data Section

5.57.1 Syntax
[<label>] udata_ovr [<RAM address>]

5.57.2 Description
For use when generating an object file. Declares the beginning of a section of
overlayed uninitialized data. If <label> is not specified, the section is
named .udata_ovr. The starting address is initialized to the specified
address or will be assigned at link time if no address is specified. The space
declared by this section is overlayed by all other udata_ovr sections of the

Note: Two sections in the same source file may not have the same name.
DS33014G-page 68 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

same name. It is an ideal way of declaring temporary variables since it allows
multiple variables to be declared at the same memory location. No code can
be generated in this segment. The res directive should be used to reserve
space for data.

For more information, refer to Chapter 6.

5.57.3 Example
Temps udata_ovr
Temp1 res 1
Temp2 res 1
Temp3 res 1
Temps udata_ovr
LongTemp1 res 2 ; this will be a variable at the
 ; same location as Temp1 and Temp2
LongTemp2 res 2 ; this will be a variable at the
 ; same location as Temp3

5.57.4 See Also
EXTERN GLOBAL IDATA UDATA UDATA_ACS UDATA_SHR TEXT

5.58 UDATA_SHR – Begin an Object File Shared
Uninitialized Data Section

5.58.1 Syntax
[<label>] udata_shr [<RAM address>]

5.58.2 Description
For use when generating an object file. Declares the beginning of a section of
shared uninitialized data. If <label> is not specified, the section is
named .udata_shr. The starting address is initialized to the specified
address or will be assigned at link time if no address is specified. This
directive is used to declare variables that are allocated in RAM that is shared
across all RAM banks (i.e. unbanked RAM). No code can be generated in this
segment. The RES directive should be used to reserve space for data.

For more information, refer to Chapter 6.

Note: This is the exception to the rule that two sections in the same
source file may not have the same name.

Note: Two sections in the same source file may not have the same name.
 1999 Microchip Technology Inc. DS33014G-page 69

MPASM User’s Guide with MPLINK and MPLIB
5.58.3 Example
Temps udata_shr
Temp1 res 1
Temp2 res 1
Temp3 res 1

5.58.4 See Also
EXTERN GLOBAL IDATA UDATA UDATA_ACS UDATA_OVR TEXT

5.59 #UNDEFINE – Delete a Substitution Label

5.59.1 Syntax
#undefine <label>

5.59.2 Description
<label> is an identifier previously defined with the #DEFINE directive. It
must be a valid MPASM label. The symbol named is removed from the symbol
table.

5.59.3 Example
#define length 20
:
:
#undefine length

5.59.4 See Also
#DEFINE IFDEF INCLUDE IFNDEF

5.60 VARIABLE – Declare Symbol Variable

5.60.1 Syntax
variable <label>[=<expr>][,<label>[=<expr>]...]

5.60.2 Description
Creates symbols for use in MPASM expressions. Variables and constants
may be used interchangeably in expressions.

The VARIABLE directive creates a symbol that is functionally equivalent to
those created by the SET directive. The difference is that the VARIABLE
directive does not require that symbols be initialized when they are declared.
DS33014G-page 70 1999 Microchip Technology Inc.

Directive Language

M
PA

S
M

1

Note that variable values cannot be updated within an operand. You must
place variable assignments, increments, and decrements on separate lines.

5.60.3 Example
Please refer to the example given for the CONSTANT directive.

5.60.4 See Also
CONSTANT SET

5.61 WHILE – Perform Loop While Condition is True

5.61.1 Syntax
while <expr>
:
:
endw

5.61.2 Description
The lines between the WHILE and the ENDW are assembled as long as
<expr> evaluates to TRUE. An expression that evaluates to zero is
considered logically FALSE. An expression that evaluates to any other value is
considered logically TRUE. A relational TRUE expression is guaranteed to
return a non-zero value; FALSE a value of zero. A WHILE loop can contain at
most 100 lines and be repeated a maximum of 256 times.

5.61.3 Example
test_mac macro count
 variable i
i = 0
 while i < count
 movlw i
i += 1
 endw
 endm
start
 test_mac 5
 end

5.61.4 See Also
ENDW IF
 1999 Microchip Technology Inc. DS33014G-page 71

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 72 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

M
PA

S
M

1

MPLINK and MPLIB

Chapter 6. Using MPASM to Create Relocatable Objects
6.1 Introduction
Since the introduction of MPASM v2.00 and MPLINK v1.00, users have had
the ability to generate and link precompiled object modules. Writing source
code that will be assembled to an object module is slightly different from
generating executable code directly to a hex file. MPASM routines designed
for absolute address assembly will require minor modifications to compile
correctly into relocatable object modules.

6.2 Highlights
Topics covered in this chapter:

• Header Files

• Program Memory

• Instruction Operands

• RAM Allocation

• Configuration Bits and ID Locations

• Accessing Labels from Other Modules

• Paging and Banking Issues

• Unavailable Directives

• Generating the Object Module

• Code Examples

6.3 Header Files
The Microchip supplied standard header files (e.g., p17c756.inc) should be
used when generating object modules. These header files define the special
function registers for the target processor.
 1999 Microchip Technology Inc. DS33014G-page 73

MPASM User’s Guide with MPLINK and MPLIB
6.4 Program Memory
Program memory code must be preceded by a CODE section declaration.

6.4.1 Absolute Code:
Start CLRW
 OPTION
 :

6.4.2 Relocatable Code:
CODE
Start CLRW
 OPTION
 :

If more than one CODE section is defined in a source file, each section must
have a unique name. If the name is not specified, it will be given the default
name .code.

Each program memory section must be contiguous within a single source file.
A section may not be broken into pieces within a singe source file.

The physical address of the code can be fixed by supplying the optional
address parameter of the CODE directive. Situations where this might be
necessary are:

• Specifying interrupt vectors

• Ensuring that a code segment does not overlap page boundaries

6.4.3 Example Relocatable Code:
Reset CODE H’0lFF’
 GOTO Start

Main CODE
 CLRW
 OPTION
DS33014G-page 74 1999 Microchip Technology Inc.

Using MPASM to Create Relocatable Objects

M
PA

S
M

1

6.5 Instruction Operands
There are some restrictions involving instruction operands. Instruction
operands must be of the form:

[HIGH|LOW|UPPER] (<relocatable symbol> + <constant offset>)

where:

• <relocatable symbol> is any label that defines a program or data
memory address

• <constant offset> is an expression that is resolvable at assembly
time to a value between -32768 and 32767

Either <relocatable symbol> or <constant offset> may be omitted.

Operands of the form:

<relocatable symbol> - <relocatable symbol>

will be reduced to a constant value if both symbols are defined in the same
code or data section.

If HIGH is used, only bits 8 through15 of the expression will be used. If LOW is
used, only bits 0 through 7 of the expression will be used. If UPPER is used,
only bits 16 through 21 of the expression will be used.

6.6 RAM Allocation
RAM space must be allocated in a data section. Five types of data sections
are available:

• UDATA – Uninitialized data. This is the most common type of data sec-
tion. Locations reserved in this section are not initialized and can be
accessed only by the labels defined in this section or by indirect
accesses.

• UDATA_ACS – Uninitialized access data. This data section is used for
variables that will be placed in access RAM of PIC18CXX devices.
Access RAM is used as quick data access for specified instructions.

• UDATA_OVR – Uninitialized overlaid data. This data section is used for
variables that can be declared at the same address as other variables in
the same module or in other linked modules. A typical use of this sec-
tion is for temporary variables.

• UDATA_SHR – Uninitialized shared data. This data section is used for
variables that will be placed in RAM that is unbanked or shared across
all banks.

• IDATA – Initialized data. The linker will generate a lookup table that can
be used to initialize the variables in this section to the specified values.
The locations reserved by this section can be accessed only by the
labels defined in this section or by indirect accesses.

The following example shows how a data declaration might be created.
 1999 Microchip Technology Inc. DS33014G-page 75

MPASM User’s Guide with MPLINK and MPLIB
6.6.1 Absolute Code:
CBLOCK 0x20
 InputGain, OutputGain ;Control loop gains
 HistoryVector ;Must be initialized to 0
 Templ, Temp2, Temp3 ;Used for internal calculations
ENDC

6.6.2 Relocatable Code:
 IDATA
HistoryVector DB 0

 UDATA
InputGain RES 1
OutputGain RES 1

 UDATA_OVR
Templ RES 1
Temp2 RES 1
Temp3 RES 1

If necessary, the location of the section may be fixed in memory by supplying
the optional address parameter. If more than one of each section type is
specified, each section must have a unique name. If a name is not provided,
the default section names are: .idata, .udata, .udata_acs,
.udata_shr, and .udata_ovr.

When defining initialized data in an IDATA section, the directives DB, DW, and
DATA can be used. DB will define successive bytes of data memory. DW and
DATA will define successive words of data memory in low-byte/high-byte
order. The following example shows how data will be initialized.

6.6.3 Relocatable Code:
 00001 LIST p=17C44
 00002 IDATA
0000 01 02 03 00003 Bytes DB 1,2,3
0003 34 12 78 56 00004 Words DW H’1234’,H’5678’
0007 41 42 43 00 00005 String DB “ABC”, 0

6.7 Configuration Bits and ID Locations
Configuration bits and ID locations can still be defined in a relocatable object
using the _ _CONFIG and _ _IDLOCS directives. Only one linked module
can specify these directives. They should be used prior to declaring any
CODE sections. After using these directives, the current section is undefined.
DS33014G-page 76 1999 Microchip Technology Inc.

Using MPASM to Create Relocatable Objects

M
PA

S
M

1

6.8 Accessing Labels From Other Modules
Labels that are defined in one module for use in other modules must be
exported using the GLOBAL directive. Labels must be defined before they are
declared GLOBAL. Modules that use these labels must use the EXTERN
directive to declare the existence of these labels. An example of using the
GLOBAL and EXTERN directives is shown below.

6.8.1 Relocatable Code, Defining Module:
 UDATA
InputGain RES 1
OutputGain RES 1
 GLOBAL InputGain, OutputGain

 CODE
Filter
 GLOBAL Filter
 : ; Filter code

6.8.2 Relocatable Code, Referencing Module:
 EXTERN InputGain, OutputGain, Filter

 UDATA
Reading RES 1

 CODE
 ...
 MOVLW GAIN1
 MOVWF InputGain
 MOVLW GAIN2
 MOVWF OutputGain
 MOVF Reading,W
 CALL Filter

6.9 Paging and Banking Issues
In many cases, RAM allocation will span multiple banks, and executable code
will span multiple pages. In these cases, it is necessary to perform proper
bank and page set-up to properly access the labels. However, since the
absolute addresses of these variable and address labels are not known at
assembly time, it is not always possible to place the proper code in the source
file. For these situations, two new directives, BANKSEL and PAGESEL have
been added. These directives instruct the linker to generate the correct bank
or page selecting code for a specified label. An example of how code should
be converted is shown below.
 1999 Microchip Technology Inc. DS33014G-page 77

MPASM User’s Guide with MPLINK and MPLIB
6.9.1 Absolute Code:
 LIST P=12C509
#include “P12C509.INC”

Varl EQU H'10'
Var2 EQU H'30'
 ...
 MOVLW InitialValue
 BCF FSR, 5
 MOVWF Varl
 BSF FSR, 5
 MOVWF Var2
 BSF STATUS, PA0
 CALL Subroutine
 ...
Subroutine CLRW ;In Page 1
 ...
 RETLW 0

6.9.2 Relocatable Code:
 LIST P=12C509
#include “P12C509.INC”

 UDATA
Varl RES 1
Var2 RES 1
 ...
 CODE
 MOVLW InitialValue
 BANKSEL Varl
 MOVWF Varl
 BANKSEL Var2
 MOVWF Var2
 PAGESEL Subroutine
 CALL Subroutine
 ...
Subroutine CLRW
 ...
 RETLW 0
DS33014G-page 78 1999 Microchip Technology Inc.

Using MPASM to Create Relocatable Objects

M
PA

S
M

1

6.10 Unavailable Directives
Macro capability and nearly all directives are available when generating an
object file. The only directive that is not allowed is the ORG directive. This can
be replaced by specifying an absolute CODE segment, as shown below.

6.10.1 Absolute Code:
Reset ORG H’01FF’
 GOTO Start

6.10.2 Relocatable Code:
Reset CODE H’0lFF’
 GOTO Start

6.11 Generating the Object Module
Once the code conversion is complete, the object module is generated by
requesting an object file on the command line or in the shell interface. When
using MPASM for Windows, check the checkbox labeled “Object File.” When
using the DOS command line interface, specify the /o option. When using the
DOS shell interface, toggle “Assemble to Object File” to “Yes.” The output file
will have a .o extension.

6.12 Code Examples
The following is extracted from the example multiply routines given as a
sample with MPASM. Most of the comments have been stripped for brevity.

6.12.1 Absolute Code:
 LIST P=16C54
 #INCLUDE “P16C5x.INC”

 cblock H ‘020’
mulcnd RES 1 ; 8 bit multiplicand
mulplr RES 1 ; 8 bit multiplier
H_byte RES 1 ; High byte of the 16 bit result
L_byte RES 1 ; Low byte of the 16 bit result
count RES 1 ; loop counter

mpy clrf H_byte
 clrf L_byte
 movlw 8
 movwf count
 movf mulcnd,w
 bcf STATUS,C ;Clear carry bit
 1999 Microchip Technology Inc. DS33014G-page 79

MPASM User’s Guide with MPLINK and MPLIB
Loop rrf mulplr,F
 btfsc STATUS,C
 addwf H_byte,F
 rrf H_byte,F
 rrf L_byte,F
 decfsz count,F
 goto loop

 retlw 0
;***
; Test Program
;***
start clrw
 option
main movf PORTB,w
 movwf mulplr ; multiplier (in mulplr) = 05
 movf PORTB,W
 movwf mulcnd

call_m call mpy ; The result is in F12 & F13
 ; H_byte & L_byte

 goto main

 ORG 01FFh
 goto start

END

Since a eight-by-eight bit multiply is a useful, generic routine, it would be
handy to break this off into a separate object file that can be linked in when
required. The above file can be broken into two files, a calling file representing
an application and a generic routine that could be incorporated in a library.

6.12.2 Relocatable Code, Calling File
 LIST P=16C54
 #INCLUDE “P16C5x.INC”

 EXTERN mulcnd, mulplr, H_byte, L_byte
 EXTERN mpy

 CODE

start clrw
 option

main movf PORTB, W
 movwf mulplr
DS33014G-page 80 1999 Microchip Technology Inc.

Using MPASM to Create Relocatable Objects

M
PA

S
M

1

 movf PORTB, W
 movwf mulcnd

call_m call mpy ; The result is in H_byte & L_byte
 goto main

Reset CODE H’0lFF’
 goto start

END

6.12.3 Relocatable Code, Library Routine:
 LIST P=16C54
 #INCLUDE “P16C5x.INC”

 UDATA
mulcnd RES l ; 8 bit multiplicand
mulplr RES 1 ; 8 bit multiplier
H_byte RES 1 ; High byte of the 16 bit result
L_byte RES 1 ; Low byte of the 16 bit result
count RES 1 ; loop counter
 GLOBAL mulcnd, mulplr, H_byte, L_byte

 CODE
mpy
 GLOBAL mpy

 clrf H_byte
 clrf L_byte
 movlw 8
 movwf count
 movf muland, W
 bcf STATUS, C ; Clear carry bit
loop rrf mulplr, F
 btfsc STATUS, C
 addwf H_byte, F
 rrf H_byte, F
 rrf L_byte, F
 decfsz count, F
 goto loop

 retlw 0
END
 1999 Microchip Technology Inc. DS33014G-page 81

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 82 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

M
PA

S
M

1

MPLINK and MPLIB

Chapter 7. Macro Language
7.1 Introduction
Macros are user defined sets of instructions and directives that will be
evaluated in-line with the assembler source code whenever the macro is
invoked.

Macros consist of sequences of assembler instructions and directives. They
can be written to accept arguments, making them quite flexible. Their
advantages are:

• Higher levels of abstraction, improving readability and reliability.

• Consistent solutions to frequently performed functions.

• Simplified changes.

• Improved testability.

Applications might include creating complex tables, frequently used code, and
complex operations.

7.2 Highlights
Topics covered in this chapter:

• Macro Syntax

• Macro Directives

• Text Substitution

• Macro Usage

• Code Examples

7.3 Macro Syntax
MPASM macros are defined according to the following syntax:

<label> macro [<arg1>,<arg2> ..., <argn>]
:
:
endm

where <label> is a valid MPASM label and <arg> is any number of optional
arguments supplied to the macro. The values assigned to these arguments at
the time the macro is invoked will be substituted wherever the argument name
occurs in the body of the macro.
 1999 Microchip Technology Inc. DS33014G-page 83

MPASM User’s Guide with MPLINK and MPLIB
The body of a macro may be comprised of MPASM directives, PICmicro MCU
assembly instructions, or MPASM Macro Directives (LOCAL for example).
Refer to Chapter 5. MPASM continues to process the body of the macro until
an EXITM or ENDM directive is encountered.

7.4 Macro Directives
There are directives that are unique to macro definitions. They cannot be
used out of the macro context (refer to Chapter 7 for details concerning these
directives):

• MACRO

• LOCAL

• EXITM

• ENDM

When writing macros, you can use any of these directives PLUS any other
directives supported by MPASM.

7.5 Text Substitution
String replacement and expression evaluation may appear within the body of
a macro.

Arguments may be used anywhere within the body of the macro, except as
part of normal expression. For example, the following macro:

Note: Forward references to macros are not permitted.

Note: The previous syntax of the “dot” format for macro specific
directives is no longer supported. For compatibility reasons, old
ASM17 code that use this format will assemble by MPASM, but as
mentioned before, you are encouraged to write new code based
on the constructs defined within this document to ensure upward
compatibility with MPASM.

Command Description

<arg> Substitute the argument text supplied as part of the
macro invocation.

#v(<expr>) Return the integer value of <expr>. Typically, used to
create unique variable names with common prefixes or
suffixes. Cannot be used in conditional assembly
directives (e.g. IFDEF, WHILE).
DS33014G-page 84 1999 Microchip Technology Inc.

Macro Language

M
PA

S
M

1

define_table macro
 local a = 0
 while a < 3
entry#v(a) dw 0
a += 1
 endw
 endm

when invoked, would generate:

entry0 dw 0
entry1 dw 0
entry2 dw 0
entry3 dw 0

7.6 Macro Usage
Once the macro has been defined, it can be invoked at any point within the
source module by using a macro call, as described below:

<macro_name> [<arg>, ..., <arg>]

where <macro_name> is the name of a previously defined macro and
arguments are supplied as required.

The macro call itself will not occupy any locations in memory. However, the
macro expansion will begin at the current memory location. Commas may be
used to reserve an argument position. In this case, the argument will be an
empty string. The argument list is terminated by white space or a semicolon.

The EXITM directive (see Chapter 5) provides an alternate method for
terminating a macro expansion. During a macro expansion, this directive
causes expansion of the current macro to stop and all code between the
EXITM and the ENDM directives for this macro to be ignored. If macros are
nested, EXITM causes code generation to return to the previous level of
macro expansion.
 1999 Microchip Technology Inc. DS33014G-page 85

MPASM User’s Guide with MPLINK and MPLIB
7.7 Code Examples

7.7.1 Eight-by-Eight Multiply
 subtitle “macro definitions”
 page
;
; multiply - eight by eight multiply macro, executing
; in program memory. optimized for speed, straight
; line code.
;
; written for the PIC17C42.
;
multiply macro arg1, arg2, dest_hi, dest_lo
 ;
 local i = 0 ; establish local index variable
 ; and initialize it.
 ;
 movlw arg1 ; setup multiplier
 movwf mulplr ;
 ;
 movlw arg2 ; setup multiplicand in w reg
 ;
 clrf dest_hi ; clear the destination regs
 clrf dest_lo ;
 ;
 bcf _carry ; clear carry for test
 ;
 while i < 8 ; do all eight bits
 addwf dest_hi ; then add multiplicand
 rrcf dest_hi ; shift right through carry
 rrcf dest_lo ; shift right again, snag carry
 ; if set by previous rotate
i += 1 ; increment loop counter
 endw ; break after eight iterations
 endm ; end of macro.

The macro declares all of the required arguments. In this case, there are four.
The LOCAL directive then establishes a local variable “i” that will be used as
an index counter. It is initialized to zero.

A number of assembler instructions are then included. When the macro is
executed, these instructions will be written in line with the rest of the
assembler source code.

The macro writes the multiplication code using an algorithm that uses right
shifts and adds for each bit set in the eight bits of the multiplier. The WHILE
directive is used for this function, continuing the loop until “i” is greater than
or equal to eight.
DS33014G-page 86 1999 Microchip Technology Inc.

Macro Language

M
PA

S
M

1

The end of the loop is noted by the ENDW directive. Execution continues with
the statement immediately following the ENDW when the WHILE condition
becomes FALSE. The entire macro is terminated by the ENDM directive.

7.7.2 Constant Compare
As another example, if the following macro were written:

include “16cxx.reg”
;
; compare file to constant and jump if file
; >= constant.
;
cfl_jge macro file, con, jump_to
 movlw con & 0xff
 subwf file, w
 btfsc status, carry
 goto jump_to
 endm

and invoked by:

 cfl_jge switch_val, max_switch, switch_on

it would produce:

 movlw max_switch & 0xff
 subwf switch_val, w
 btfsc status, carry
 goto switch_on
 1999 Microchip Technology Inc. DS33014G-page 87

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 88 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

M
PA

S
M

1

MPLINK and MPLIB

Chapter 8. Expression Syntax and Operation
8.1 Introduction
This chapter describes various expression formats, syntax, and operations
used by MPASM.

8.2 Highlights
Topics covered in this chapter:

• Text Strings

• Numeric Constants and Radix

• Arithmetic Operators and Precedence

• High/Low/Upper and Increment/Decrement Operators

8.3 Text Strings
A “string” is a sequence of any valid ASCII character (of the decimal range of
0 to 127) enclosed by double quotes.

Strings may be of any length that will fit within a 255 column source line. If a
matching quote mark is found, the string ends. If none is found before the end
of the line, the string will end at the end of the line. While there is no direct
provision for continuation onto a second line, it is generally no problem to use
a second DW directive for the next line.

The DW directive will store the entire string into successive words. If a string
has an odd number of characters (bytes), the DW and DATA directives will pad
the end of the string with one byte of zero (00).

If a string is used as a literal operand, it must be exactly one character long, or
an error will occur.
 1999 Microchip Technology Inc. DS33014G-page 89

MPASM User’s Guide with MPLINK and MPLIB
See the examples below for the object code generated by different statements
involving strings.

7465 7374 696E dw “testing output string one\n”
6720 6F75 7470
7574 2073 7472
696E 6720 6F6E
650A
 #define str “testing output string two”
B061 movlw “a”
7465 7374 696E data “ testing first output string”
6720 6669 7273
7420 6F75 7470
7574 2073 7472
696E 6700

The assembler accepts the ANSI ‘C’ escape sequences to represent certain
special control characters:

Table 8.1: ANSI ‘C’ Escape Sequences

Escape
Character

Description
Hex

Value

\a Bell (alert) character 07

\b Backspace character 08

\f Form feed character 0C

\n New line character 0A

\r Carriage return character 0D

\t Horizontal tab character 09

\v Vertical tab character 0B

 \\ Backslash 5C

\? Question mark character 3F

 \’ Single quote (apostrophe) 27

 \” Double quote character 22

\0OO Octal number (zero, Octal digit, Octal digit)

\xHH Hexadecimal number
DS33014G-page 90 1999 Microchip Technology Inc.

Expression Syntax and Operation

M
PA

S
M

1

8.4 Numeric Constants and Radix
MPASM supports the following radix forms: hexadecimal, decimal, octal,
binary, and ASCII. The default radix is hexadecimal; the default radix
determines what value will be assigned to constants in the object file when a
radix is not explicitly specified by a base descriptor.

Constants can be optionally preceded by a plus or minus sign. If unsigned,
the value is assumed to be positive.

The following table presents the various radix specifications:

Note: Intermediate values in constant expressions are treated as 32-bit
unsigned integers. Whenever an attempt is made to place a
constant in a field for which it is too large, a truncation warning will
be issued.

Table 8.2: Radix Specifications

Type Syntax Example

Decimal D’<digits>’ D’100’

Hexadecimal H’<hex_digits>’
0x<hex_digits>

H’9f’
0x9f

Octal O’<octal_digits>’ O’777’

Binary B’<binary_digits>’ B’00111001’

ASCII ’<character>’
A’<character>’

’C’
A’C’

Table 8.3: Arithmatic Operators and Precedence

Operator Example

$ Current/Return program
counter

goto $ + 3

(Left Parenthesis 1 + (d * 4)

) Right Parenthesis (Length + 1) * 256

! Item NOT (logical complement) if ! (a == b)

- Negation (2’s complement) -1 * Length

~ Complement flags = ~flags

high Return high byte movlw high CTR_Table

low Return low byte movlw low CTR_Table

upper Return upper byte movlw upper CTR_Table
 1999 Microchip Technology Inc. DS33014G-page 91

MPASM User’s Guide with MPLINK and MPLIB
* Multiply a = b * c

/ Divide a = b / c

% Modulus entry_len = tot_len % 16

+ Add tot_len = entry_len * 8 + 1

- Subtract entry_len = (tot - 1) / 8

<< Left shift flags = flags << 1

>> Right shift flags = flags >> 1

>= Greater or equal if entry_idx >= num_entries

> Greater than if entry_idx > num_entries

< Less than if entry_idx < num_entries

<= Less or equal if entry_idx <= num_entries

== Equal to if entry_idx == num_entries

= Not equal to if entry_idx != num_entries

& Bitwise AND flags = flags & ERROR_BIT

^ Bitwise exclusive OR flags = flags ^ ERROR_BIT

| Bitwise inclusive OR flags = flags | ERROR_BIT

&& Logical AND if (len == 512) && (b == c)

|| Logical OR if (len == 512) || (b == c)

= Set equal to entry_index = 0

+= Add to, set equal entry_index += 1

-= Subtract, set equal entry_index -= 1

*= Multiply, set equal entry_index *= entry_length

/= Divide, set equal entry_total /= entry_length

%= Modulus, set equal entry_index %= 8

<<= Left shift, set equal flags <<= 3

>>= Right shift, set equal flags >>= 3

&= AND, set equal flags &= ERROR_FLAG

|= Inclusive OR, set equal flags |= ERROR_FLAG

^= Exclusive OR, set equal flags ^= ERROR_FLAG

++ Increment i ++

- - Decrement i --

Table 8.3: Arithmatic Operators and Precedence

Operator Example
DS33014G-page 92 1999 Microchip Technology Inc.

Expression Syntax and Operation

M
PA

S
M

1

8.5 High/Low/Upper

8.5.1 Syntax
high <operand>
low <operand>
upper <operand>

8.5.2 Description
These operators are used to return one byte of a multi-byte label value. This is
done to handle dynamic pointer calculations as might be used with table read
and write instructions.

8.5.3 Example
movlw low size ; handle the lsb’s
movpf wreg, low size_lo
movlw high size ; handle the msb’s
movpf wreg, high size_hi

8.6 Increment/Decrement (++/--)

8.6.1 Syntax
<variable>++
<variable>--

8.6.2 Description
Increments or decrements a variable value. These operators can only be used
on a line by themselves; they cannot be embedded within other expression
evaluation.

8.6.3 Example
LoopCount = 4
 while LoopCount > 0
 rlf Reg, f
LoopCount --
 endw
 1999 Microchip Technology Inc. DS33014G-page 93

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 94 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

M
PA

S
M

1

MPLINK and MPLIB

Chapter 9. Example Initialization Code
9.1 Introduction
This chapter discusses initialization code for various PICmicro devices.

9.2 Highlights
Topic covered int this chapter:

• Initialization Code Examples

9.3 Initialization Code Examples
If the IDATA directive is used when generating an object module, the user
must provide code to perform the data initialization. Examples of initialization
code that may be used and modified as needed may be found with MPLINK
sample application examples on our web site (http:\\www.microchip.com).
 1999 Microchip Technology Inc. DS33014G-page 95

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 96 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Part 2 – MPLINK
2

M
P

L
IN

K

Chapter 1. MPLINK Preview ..99

Chapter 2. MPLINK – Installation and Getting Started103

Chapter 3. Using MPLINK with DOS ..109

Chapter 4. Using MPLINK with Windows and MPLAB111

Chapter 5. MPLINK Linker Scripts ...119

Chapter 6. Linker Processing ...127

Chapter 7. Sample Application 1 ..131

Chapter 8. Sample Application 2 ..137

Chapter 9. Sample Application 3 ..145

Chapter 10. Sample Application 4 ..151
 1999 Microchip Technology Inc. DS33014G-page 97

MPASM User’s Guide with MPLINK and MPLIB
DS33014G-page 98 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 1. MPLINK Preview
2

M
P

L
IN

K

1.1 Introduction
This chapter will define what MPLINK is and how it can help you develop
firmware for PICmicro devices.

1.2 Highlights
Topics covered in this chapter:

• What MPLINK Is

• What MPLINK Does

• How MPLINK Helps You

• MPLINK Examples

• Tool Versions and Platforms Supported

1.3 What MPLINK Is
MPLINK is a linker for the Microchip relocatable assembler, MPASM, and the
Microchip C compiler, MPLAB-C17/C18. For more information on MPASM,
see Part 1 of this document. For more information on MPLAB-C17/C18, see
the MPLAB-C17/C18 Compiler User’s Guide (DS51112).

MPLINK also may be used with the Microchip librarian, MPLIB. See Part 3 of
this document for more information on MPLIB.

MPLINK is designed to be used with MPLAB, though it does not have to be.
However, once an application is built, it is convenient to use MPLAB to test
and debug the code using the simulator or an emulator, and to use a device
programmer to program a part. For more information on MPLAB, see the
MPLAB User’s Guide (DS51025).

1.4 What MPLINK Does
MPLINK performs many functions:

• Locates Code and Data. Takes as input relocatable source files. Using
the linker script, it decides where the code will be placed in program
memory and where variables will be placed in RAM.

• Resolves Addresses. External references in a source file generate
relocation entries in the object file. After MPLINK locates code and
data, it uses this relocation information to update all external references
with the actual addresses.
 1999 Microchip Technology Inc. DS33014G-page 99

MPASM User’s Guide with MPLINK and MPLIB
• Generates an Executable. Produces a .HEX file that can be pro-
grammed into a PICmicro or loaded into an emulator or simulator to be
executed.

• Configures Stack Size and Location. Allows MPLAB-C17/C18 to set
aside RAM space for dynamic stack usage.

• Identifies Address Conflicts. Checks to ensure that program/data do
not get assigned to space that has already been assigned or reserved.

• Provides Symbolic Debug Information. Outputs a file that MPLAB
uses to track address labels, variable locations, and line/file information
for source level debugging.

1.5 How MPLINK Helps You
MPLINK allows you to produce modular, reusable code. Control over the
linking process is accomplished through a linker “script” file and with
command line options. MPLINK ensures that all symbolic references are
resolved and that code and data fit into the available PICmicro device.

MPLINK can help you with:

• Reusable Source Code. You can build up your application in small,
reusable modules.

• Libraries. You can make libraries of related functions which can be
used to make efficient, readily compilable applications.

• MPLAB-C17/C18. The Microchip compiler for PIC17CXX and
PIC18CXX devices requires the use of MPLINK and can be used with
pre-compiled libraries and MPASM.

• Centralized Memory Allocation. By using application-specific linker
scripts, precompiled objects and libraries can be combined with new
source modules and placed efficiently into available memory at link time
rather than at compile/assemble time.

• Accelerated Development. Since tested modules and libraries don’t
have to be recompiled each time a change is made in your code, compi-
lation time may be reduced.

1.6 MPLINK Examples
You can learn how to use MPLINK from the four sample applications at the
end of this part. These sample applications can be used as templates for your
own application.

• Sample Application 1

- How to place program code in different memory regions
- How to place data tables in ROM memory
- How to set configuration bits in C
DS33014G-page 100 1999 Microchip Technology Inc.

MPLINK Preview

2

M
P

L
IN

K

• Sample Application 2

- How to partition memory for a boot loader
- How to compile code that will be loaded into external RAM and

executed

• Sample Application 3

- How to access peripherals that are memory mapped
- How to create new sections

• Sample Application 4

- How to manually partition RAM space for program usage

1.7 Platforms Supported
MPLINK is distributed in two executable formats: a Windows 32 console
application suitable for Windows 95/98 and Windows NT platforms and a
DOS-extended DPMI application suitable for Windows 3.x and DOS
platforms. Executables which are DOS-extended applications have names
which end with ‘d’ to distinguish them from the Windows 32 versions. DOS-
extended versions require the DOS extender program ‘DOS4GW.EXE’ which
is also distributed with MPLINK.
 1999 Microchip Technology Inc. DS33014G-page 101

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 102 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 2. MPLINK – Installation and Getting Started
2

M
P

L
IN

K

2.1 Introduction
This chapter will tell you how to install MPLINK on your system and give you
an overview of how the linker (MPLINK) works.

2.2 Highlights
Topics covered in this chapter:

• Installation

• Overview of Linker

• Linker Input/Output Files

2.3 Installation
There are two versions of MPLINK. MPLINKD.EXE is a DOS extender version
and is only recommended for DOS or Windows 3.x systems. MPLINK.EXE is
a Windows 32-bit console application and is for Windows 95/98/NT.
MPLINKD.EXE and MPLINK.EXE are command-line applications.

MPLINKD.EXE may be used with DOS or a DOS window in Windows 3.x.

MPLINK.EXE may be used with a DOS window in Windows 95/98/NT. You
can use it with MPLAB (recommended).

If you are going to use MPLAB with MPLINK, you do not need to install the
linker and supporting files separately. When MPLAB is installed, MPLINK is
also installed. To find out how to install MPLAB, please refer to the MPLAB
User’s Guide (DS51025). You may obtain the MPLAB software and user’s
guide either from the Microchip Technical Library CD or from our web site.

If you are not going to use MPLAB with MPLINK, you can obtain the linker and
supporting files separately either from the Microchip Technical Library CD or
from our web site. MPLINK is bundled with MPLIB into a zip file. To install:

• Create a directory in which to place the files

• Unzip the MPLINK and MPLIB files using either WinZip or PKZIP
 1999 Microchip Technology Inc. DS33014G-page 103

MPASM User’s Guide with MPLINK and MPLIB
2.4 Overview of Linker
Figure 2.1 is a diagram of how MPLINK works with other Microchip tools.

Figure 2.1: Microchip Tool Overview

MPLINK combines multiple input object modules, generated by MPASM or
MPLAB-C17/C18, into a single output executable (hex) file. A linker script tells
the linker how to combine these modules.

MPLINK is executed after assembling or compiling relocatable object modules
with MPASM and/or MPLAB-C17/C18. The actual addresses of data and the
location of functions will be assigned when MPLINK is executed. This means
that you will instruct MPLINK, via a linker script, to place code and data
somewhere within named regions of memory. These named regions may be
specific physical locations or not.

The linker script must also tell MPLINK about the ROM and RAM memory
regions available in the target PICmicro device. Then, it can analyze all the
input files and try to fit the application’s routines into ROM and assign its data
variables into available RAM. If there is too much code or too many variables
to fit, MPLINK will give an error message.

MPLINK also provides flexibility for specifying that certain blocks of data
memory are reusable, so that different routines (which never call each other
and which don’t depend upon this data to be retained between execution) can
share limited RAM space.

mult.c

MPLAB-C17/C18

mult.o

MPLIB

math.lib

MPLINK

prog.hex

avg.asm

MPASM

avg.o

add.asm

MPASM

add.o

main.c

MPLAB-C17/C18

main.o

prog.asm

MPASM

prog.o

17c756.lkr

prog.mapprog.lstprog.cod

source

files

object

files

linker

script

library

output

files
prog.out
DS33014G-page 104 1999 Microchip Technology Inc.

MPLINK – Installation and Getting Started

2

M
P

L
IN

K

Libraries are available for most PICmicro peripheral functions as well as for
many standard C functions (See Chapter 2 for more information on MPLIB).
The linker will only extract and link individual object files that are needed for
the current application from the included libraries. This means that relatively
large libraries can be used in a highly efficient manner.

MPLINK combines all input files to generate the executable output and
ensures that all addresses are resolved. Any function in the various input
modules that attempts to access data or call a routine that has not been
allocated or created will cause MPLINK to generate an error.

MPLINK also generates symbolic information for debugging your application
with MPLAB (.cod, .lst, and .map files).

2.5 Linker Input/Output Files
MPLINK is a linker which combines multiple object files into one executable
hex file. File types used as linker inputs are:

• Object files (.o). Relocatable code produced from source files.

• Library files (.lib). A collection of object files grouped together for con-
venience.

• Linker script files (.lkr). Description of memory layout for a particular
processor / project.

File types used as linker outputs are:

• COFF file (.out, .cof). Intermediate file used by MPLINK to generate
Code file, HEX file, and Listing file.

• Code file (.cod). Debug file used by MPLAB.

• HEX file (.hex). Binary executable with no debug information.

• Listing file (.lst). Original source code, side-by-side with final binary
code.

• Map file (.map). Shows the memory layout after linking. Indicates used
and unused memory regions.

2.5.1 Object File (.O)
Object files are the relocatable code produced from source files. It is the
linker’s job to assemble source files and library files, according to a linker
script, into an object file.

Note: Source files (C or assembly code) are used when building the list-
ing file.
 1999 Microchip Technology Inc. DS33014G-page 105

MPASM User’s Guide with MPLINK and MPLIB
2.5.2 Library File (.LIB)
A library file may be created from object files by MPLIB or may be an existing
standard library. For more information on library files, see Part 3.

2.5.3 Linker Script File (.LKR)
Linker script files are the command files of MPLINK. For more information on
linker scripts, see Chapter 5.

2.5.4 COFF Object Module File (.OUT, .COF)
MPLINK generates a COFF file which serves as an intermediate file.
MP2COD.EXE generates the COD files and List files from this, and
MP2HEX.EXE generates the HEX file.

2.5.5 Symbol and Debug File (.COD)
MPLINK produces a COD file for use in MPLAB debugging of code.

2.5.6 Hex File (.HEX)
MPLINK is capable of producing different HEX file formats. See Appendix A
for a detailed description of these formats.

2.5.7 Absolute Listing File (.LST)
The absolute listing file generated by MPLINK can be viewed by selecting
Window>Absolute Listing. It provides a mapping of source code to machine
instructions. This window is automatically reloaded each time the project is
rebuilt. For more information on the format of this file, see Part 1,
Section 2.5.2.

2.5.8 Map File (.MAP)
The map file generated by MPLINK can be viewed by selecting File>Open
and choosing the file you specified in the MPLINK options. It provides
information on the absolute location of source code symbols in the final
output. It also provides information on memory use, indicating used/unused
memory. This window is automatically reloaded after each rebuild.

The map file contains three tables. The first table (Section Info) displays
information about each section. The information includes the name of the
section, its type, beginning address, whether the section resides in program or
data memory, and its size in bytes.
DS33014G-page 106 1999 Microchip Technology Inc.

MPLINK – Installation and Getting Started

2

M
P

L
IN

K

There are four types of sections:

• code

• initialized data (idata)

• uninitialized data (udata)

• initialized ROM data (romdata)

The following table is an example of the section table in a map file:

 Section Info
 Section Type Address Location Size(Bytes)
--------- --------- --------- --------- ---------
Reset code 0x000000 program 0x000002
.cinit romdata 0x000021 program 0x000004
.code code 0x000023 program 0x000026
.udata udata 0x000020 data 0x000005

The second table in the map file (Symbols – Sorted by Name) provides
information about the symbols in the output module. The table is sorted by the
symbol name and includes the address of the symbol, whether the symbol
resides in program or data memory, whether the symbol has external or static
linkage, and the name of the file where defined. The following table is an
example of the symbol table sorted by symbol name in a map file:

 Symbols - Sorted by Name
 Name Address Location Storage File
 ------- -------- -------- -------- ---------
 call_m 0x000026 program static C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 loop 0x00002e program static C:\MPASMV2\MUL8X8.ASM
 main 0x000024 program static C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 mpy 0x000028 program extern C:\MPASMV2\MUL8X8.ASM
 start 0x000023 program static C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 H_byte 0x000022 data extern C:\MPASMV2\MUL8X8.ASM
 L_byte 0x000023 data extern C:\MPASMV2\MUL8X8.ASM
 count 0x000024 data static C:\MPASMV2\MUL8X8.ASM
 mulcnd 0x000020 data extern C:\MPASMV2\MUL8X8.ASM
 mulplr 0x000021 data extern C:\MPASMV2\MUL8X8.ASM
 1999 Microchip Technology Inc. DS33014G-page 107

MPASM User’s Guide with MPLINK and MPLIB
The third table in the map file (Symbols – Sorted by Address) provides the
same information that the second table provides, but it is sorted by symbol
address rather than symbol name. The following is an example of the symbol
table sorted by address in a map file:

 Symbols - Sorted by Address
 Name Address Location Storage File
 -------- -------- -------- -------- ---------
 start 0x000023 program static C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 main 0x000024 program static C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 call_m 0x000026 program static C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 mpy 0x000028 program extern C:\MPASMV2\MUL8X8.ASM
 loop 0x00002e program static C:\MPASMV2\MUL8X8.ASM
 mulcnd 0x000020 data extern C:\MPASMV2\MUL8X8.ASM
 mulplr 0x000021 data extern C:\MPASMV2\MUL8X8.ASM
 H_byte 0x000022 data extern C:\MPASMV2\MUL8X8.ASM
 L_byte 0x000023 data extern C:\MPASMV2\MUL8X8.ASM
 count 0x000024 data static C:\MPASMV2\MUL8X8.ASM

If a linker error is generated, a complete map file can not be created.
However, if the –m option was supplied, an error map file will be created. The
error map file contains only section information --no symbol information is
provided. The error map file in conjunction with the error message should
provide enough context to determine why a section could not be allocated.
DS33014G-page 108 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 3. Using MPLINK with DOS
2

M
P

L
IN

K

3.1 Introduction
This chapter will describe how to use MPLINK on a DOS command line.

3.2 Highlights
Topic covered in this chapter:

• Linker Command Line Options

3.3 Linker Command Line Options
When used in MPLAB, all of MPLINK’s options are available through the Node
Properties dialog, accessed from the Edit Project dialog. See the next chapter
for more on using MPLINK with MPLAB.

When using MPLINK in a batch file, or directly from DOS, MPLINK is invoked
with the following syntax:

mplink { cmdfile | [objfile] | [libfile] | [option] } . . .

You must have one command file (cmdfile) and at least one object file
(objfile).

’cmdfile’ is the name of a linker command file. All linker command files
must have the extension '.lkr'.

’objfile’ is the name of an assembler or compiler generated object file.
All object files must have the extension '.o'.

’libfile’ is the name of a librarian created library file. All library files must
have the extension '.lib'.

’option’ is a linker command line option described in Table 3.1.

Table 3.1: MPLINK Command Line Options

Option Description

/o filename Specify output file ’filename’. Default is a.out.

/m filename Create map file ’filename’.

/l pathlist Add directories to library search path.

/k pathlist Add directories to linker script search path.

/n length Specify number of lines per listing page.

/h, /? Display help screen.

/a hexformat Specify format of hex output file.

/q Quiet mode.

/d Don’t create an absolute listing file.
 1999 Microchip Technology Inc. DS33014G-page 109

MPASM User’s Guide with MPLINK and MPLIB
There is no required order for the command line arguments; however,
changing the order can affect the operation of the linker. Specifically, additions
to the library/object directory search path are appended to the end of the
current library/object directory search path as they are encountered on the
command line and in command files.

Library and object files are searched for in the order in which directories occur
in the library/object directory search path. Therefore, changing the order of
directories may change which file is selected.

The /o option is used to supply the name of the generated output COFF file.
The linker also generates a COD file for MPLAB debugging, and an Intel®
format HEX programming. Both of these files have the same name as the
output COFF file but with the file extensions ‘.cod’ and ‘.hex’ respectively. If
the /o option is not supplied, the default output COFF file is named ‘a.out’ and
the corresponding COD and HEX files are named 'a.cod' and ‘a.hex’.

An example of an MPLINK command line is shown in Example 3.1.

Example 3.1:

This instructs MPLINK to use the 17C756.LKR linker script file to link the
input modules MAIN.O, FUNCT.O, and the precompiled library ADC17.LIB. It
also instructs MPLINK to produce a map file named MAIN.MAP. MAIN.O and
FUNCT.O must have been previously compiled or assembled with
MPLAB-C17/C18 or MPASM. The output files MAIN.HEX and MAIN.COD file
will be produced if no errors occur during the link process.

MPLINK 17C756.LKR MAIN.O FUNCT.O ADC17.LIB /m MAIN.MAP /o MAIN.OUT
DS33014G-page 110 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 4. Using MPLINK with Windows and MPLAB
2

M
P

L
IN

K

4.1 Introduction
This chapter will describe how to use MPLINK with MPLAB projects.

4.2 Highlights
Topics contained in this chapter:

• MPLAB Projects and MPLINK

• Setting Up MPLAB to Use MPLINK

• Generating Output Files

• MPLAB/MPLINK Troubleshooting

4.3 MPLAB Projects and MPLINK
MPLAB projects are composed of nodes (Figure 4.1). These represent files
used by a generated project.

• Target Node – Final Output

- HEX File

• Project Nodes – Components

- C Source Files
- Assembly Source Files
- Library Files
- Pre-Compiled Object Files
- Linker Script Files

In this chapter, we are concerned with the relationship between MPLAB and
MPLINK. For more general information about MPLAB projects, consult the
MPLAB User’s Guide (DS51025).
 1999 Microchip Technology Inc. DS33014G-page 111

MPASM User’s Guide with MPLINK and MPLIB

Figure 4.1: Project Relationships – MPLINK

Projects are used to apply language tools, such as assemblers, compilers and
linkers, to source files in order to make executable (.HEX) files. This diagram
shows the relationship between the final.HEX file and the components used
to create it.

Project Files Language Tools

Target Node

.HEX

Source Node
.C

Source Node

.ASM

Library Node

.LIB

Object Node

.O

Linker Script

.LKR

MPLINK

MPLAB-

MPASM

Properties

Properties

Properties

C17/C18
DS33014G-page 112 1999 Microchip Technology Inc.

Using MPLINK with Windows and MPLAB

2

M
P

L
IN

K

4.4 Setting Up MPLAB to use MPLINK
Follow these steps to set up MPLINK to use with MPLAB:

1. After creating your project (Project>New Project), the Edit Project dialog
will appear. Select the name of the project (e.g., AD.HEX) in the Project
Files list to activate the Node Properties button. Then click on Node
Properties.

Figure 4.2: Edit Project Dialog
 1999 Microchip Technology Inc. DS33014G-page 113

MPASM User’s Guide with MPLINK and MPLIB
2. In the Node Properties dialog, select MPLINK as the Language Tool and,
if desired, set other linker options.

Figure 4.3: Node Properties Dialog
DS33014G-page 114 1999 Microchip Technology Inc.

Using MPLINK with Windows and MPLAB

2

M
P

L
IN

K

3. Add source files to your project. Use the Add Node button of the Edit
Project dialog to bring up the Add Node dialog. Specify the tool that will
be used for compiling each into an object file by selecting the source file
name and clicking Node Properties.

Figure 4.4: Add Node Dialog – Source Files

4. Add precompiled object files and libraries (such as those included with
MPLAB-C17/C18). You can add more than one file by holding down the
CTRL key while clicking on several files.

Figure 4.5: Add Node Dialog – Object Files
 1999 Microchip Technology Inc. DS33014G-page 115

MPASM User’s Guide with MPLINK and MPLIB
5. Add the linker script file as a node to your project.

Figure 4.6: Add Node Dialog – Linker Script Files

6. Click OK on the Edit Project dialog when you are done.

Figure 4.7: Edit Project Dialog – Nodes Added
DS33014G-page 116 1999 Microchip Technology Inc.

Using MPLINK with Windows and MPLAB

2

M
P

L
IN

K

4.5 Generating Output Files
Once the MPLAB project is set up, you must build it. Select Project>Make
Project to do this. Hex files are automatically loaded into program memory.

In addition to the hex file, MPLINK generates other files to help you debug
your code. See Section 2.5 for more information on these files and their
specific functions.

4.6 MPLAB/MPLINK Troubleshooting
If have experienced problems, check the following:

Select Project>Install Language Tool... and check that MPLINK points to
MPLINK.EXE in the MPLAB installation directory and that the Command-line
option is selected.

Figure 4.8: Install Language Tool Dialog – MPLINK
 1999 Microchip Technology Inc. DS33014G-page 117

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 118 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 5. MPLINK Linker Scripts
2

M
P

L
IN

K

5.1 Introduction
This chapter will describe how to make and modify linker scripts for use with
MPLINK.

5.2 Highlights
Topics covered in this chapter:

• Linker Scripts Defined

• Command Line Information

• Memory Region Definitions

• Logical Section Definitions

• Stack Definitions

• Linker Script Caveats

5.3 Linker Scripts Defined
Linker script files are the command files of MPLINK. They specify:

• Program and data memory for the target part

• Stack size and location (for MPLAB-C17/C18)

• Logical sections used in source code to place code and data

Linker script directives form the command language that controls the linker’s
behavior. There are four basic categories of linker script directives. Each of
these directives, plus some useful linker script caveats, are discussed in the
following sections.

Linker script comments are specified by ‘//’, i.e., any text between a ‘//’ and the
end of a line is ignored.

5.4 Command Line Information
The MPLAB Project Manager can set this information directly. You probably
only need to use these if you are linking from the command line.

LIBPATH

Library and object files which do not have a path are searched using the
library/object search path. The following directive appends additional search
directories to the library/object search path:

LIBPATH ’libpath’

where, 'libpath' is a semicolon delimited list of directories.
 1999 Microchip Technology Inc. DS33014G-page 119

MPASM User’s Guide with MPLINK and MPLIB
Example:

To append the current directory and the directory ‘C:\PROJECTS\INCLUDE’
to the library/object search path, the following line should be added to the
linker command file:

LIBPATH .;C:\PROJECTS\INCLUDE

LKRPATH

Linker command files that do not have a path are searched for using the linker
command file search path. The following directive appends additional search
directories to the linker command file search path:

LKRPATH ’lkrpath’

where, ’lkrpath’ is a semicolon delimited list of directories.

Example:

To append the current directory's parent and the directory
‘C:\PROJECTS\SCRIPTS’ to the linker command file search path, the
following line should be added to the linker command file:

LKRPATH ..;C:\PROJECTS\SCRIPTS

FILES

The following directive specifies object or library files for linking:

FILES ’objfile/libfile’ [’objfile/libfile’...]

where, ’objfile/libfile’ is either an object or library file. Note, more
than one object or library file can be specified in a single FILES directive.

Example:

To specify that the object module ‘main.o’ be linked with the library file
‘math.lib’, the following line should be added to the linker command file:

FILES main.o math.lib

INCLUDE

The following directive includes an additional linker command file:

INCLUDE ’cmdfile’

where, ’cmdfile’ is the name of the linker command file to include.

Example:

To include the linker command file named ‘mylink.lkr’, the following line
should be added to the linker command file:

INCLUDE mylink.lkr
DS33014G-page 120 1999 Microchip Technology Inc.

MPLINK Linker Scripts

2

M
P

L
IN

K

5.5 Memory Region Definitions
The linker script describes the memory architecture of the PICmicro. This
allows the linker to place code in available ROM space and variables in
available RAM space. Regions that are marked PROTECTED will not be used
for general allocation of program or data. These regions are marked for
special usage and you can only put code or data in these regions by
specifically marking code and data in your source code with #pragma code/
udata type directives in MPLAB-C17/C18 or with code/udata type
directives in MPASM.

5.5.1 Defining ROM Memory Regions
The CODEPAGE directive is used for program code, initialized data values,
constant data values and external memory for PIC17CXX devices. It has the
following format:

CODEPAGE NAME=memName START=addr END=addr [PROTECTED] [FILL=fillvalue]

where:

‘memName’ is any ASCII string used to identify a CODEPAGE.

‘addr’ is a decimal or hexadecimal number specifying an address.

‘fillValue’ is a value which fills any unused portion of a memory block. If
this value is in decimal notation, it is assumed to be a 16-bit quantity. If it is in
hexadecimal notation (e.g., 0x2346), it may be any length divisible by full
words (16 bits).

The optional keyword PROTECTED indicates a region of memory that only can
be used by program code that specifically requests it.

5.5.2 Defining ROM Memory Regions – Example
Figure 5.1 shows the program memory layout for a PIC17C42A
microcontroller. Based on this map, the CODEPAGE declarations are shown
in Example 5.1.
 1999 Microchip Technology Inc. DS33014G-page 121

MPASM User’s Guide with MPLINK and MPLIB

Figure 5.1: PIC17C42A Program Memory Map (Microcontroller Mode)

Example 5.1: ROM Memory Declarations for PIC17C42A

5.5.3 Defining RAM Memory Regions
The DATABANK, SHAREBANK and ACCESSBANK directives are used for
variable data in internal RAM. The formats for these directives are as follows.

• Banked registers

DATABANK NAME=memName START=addr END=addr [PROTECTED]

• Unbanked registers

SHAREBANK NAME=memName START=addr END=addr [PROTECTED]

• Access registers (PIC18CXX only)

ACCESSBANK NAME=memName START=addr END=addr [PROTECTED]

where:

‘memName’ is any ASCII string used to identify an area in RAM.

‘addr’ is a decimal or hexadecimal number specifying an address.

The optional keyword PROTECTED indicates a region of memory that only can
be assigned to variables that are specifically identified in the source code.

CODEPAGE NAME=vectors START=0x0 END=0x27 PROTECTED
CODEPAGE NAME=page0 START=0x28 END=0x7FF
CODEPAGE NAME=.config START=0xFE00 END=0xFE0F PROTECTED

User Memory Space

Reset Vector

Interrupt Vectors

Configuration Memory Space

Test EEPROM
Boot ROM

0000h
0008h

0020h

07FFh

FE00h

FE10h
FF60h
FFFFh

CODEPAGE vectors

CODEPAGE page0

CODEPAGE .config
DS33014G-page 122 1999 Microchip Technology Inc.

MPLINK Linker Scripts

2

M
P

L
IN

K

5.5.4 Defining RAM Memory Regions – Example
Based on the RAM memory layout shown in Figure 5.2, the DATABANK and
SHAREBANK entries in the linker script file would appear as shown in
examples Example 5.2 and Example 5.3.

Figure 5.2: PIC17C42A Register File Map

Address Bank 0 Bank 1 Bank 2 Bank 3

00h INDF0

01h FSR0

: :

0Eh TBLPTRH

0Fh BSR

10h PORTA DDRC TMR1 PW1DCL

11h DDRB PORTC TMR2 PW2DCL

: :

16h TXREG PIR PR3LCA1L TCON1

17h SPBRG PIE PR3HCA1H TCON2

18h PRODL

19h PRODH

1Ah

General Purpose RAM (Unbanked):

1Fh

20h General
Purpose

RAM

General
Purpose

RAM
Not Used:

FFh
 1999 Microchip Technology Inc. DS33014G-page 123

MPASM User’s Guide with MPLINK and MPLIB

s
s
s
s

Example 5.2: RAM Memory Declarations for PIC17C42A - Banked Memory

Example 5.3: RAM Memory Declarations for PIC17C42A - Unbanked Memory

DATABANK NAME=sfr0 START=0x10 END=0x17 PROTECTED //Special Function Registers in Bank0
DATABANK NAME=sfr1 START=0x110 END=0x117 PROTECTED //Special Function Registers in Bank1
DATABANK NAME=sfr2 START=0x210 END=0x217 PROTECTED //Special Function Registers in Bank2
DATABANK NAME=sfr3 START=0x310 END=0x317 PROTECTED //Special Function Registers in Bank3

DATABANK NAME=gpr0 START=0x20 END=0xFF //General Purpose RAM in Bank0
DATABANK NAME=gpr1 START=0x120 END=0x1FF //General Purpose RAM in Bank1

SHAREBANK NAME=sfrnobnk START=0x0 END=0xF PROTECTED //INDF0 thru BSR - available in all bank
SHAREBANK NAME=sfrnobnk START=0x100 END=0x10F PROTECTED //INDF0 thru BSR - available in all bank
SHAREBANK NAME=sfrnobnk START=0x200 END=0x20F PROTECTED //INDF0 thru BSR - available in all bank
SHAREBANK NAME=sfrnobnk START=0x300 END=0x30F PROTECTED //INDF0 thru BSR - available in all bank

SHAREBANK NAME=sfrprod START=0x18 END=0x19 PROTECTED //PRODL, PRODH - available in all banks
SHAREBANK NAME=sfrprod START=0x118 END=0x119 PROTECTED //PRODL, PRODH - available in all banks
SHAREBANK NAME=sfrprod START=0x218 END=0x219 PROTECTED //PRODL, PRODH - available in all banks
SHAREBANK NAME=sfrprod START=0x318 END=0x319 PROTECTED //PRODL, PRODH - available in all banks

SHAREBANK NAME=gpr2 START=0x1A END=0x1F PROTECTED //1A thru 1F - available in all banks
SHAREBANK NAME=gpr2 START=0x11A END=0x11F PROTECTED //1A thru 1F - available in all banks
SHAREBANK NAME=gpr2 START=0x21A END=0x21F PROTECTED //1A thru 1F - available in all banks
SHAREBANK NAME=gpr2 START=0x31A END=0x31F PROTECTED //1A thru 1F - available in all banks
DS33014G-page 124 1999 Microchip Technology Inc.

MPLINK Linker Scripts

2

M
P

L
IN

K

5.6 Logical Section Definitions
Logical sections are used to specify which of the defined memory regions
should be used for a portion of source code. To use logical sections, define
the section in the linker script file with the SECTION directive and then
reference that name in the source file using that language’s built-in
mechanism (e.g., #pragma section for MPLAB-C17/C18).

The section directive defines a section by specifying its name, and either the
block of program memory in ROM or the block of data memory in RAM which
contains the section:

SECTION NAME=’secName’ { ROM=’memName’ | RAM=’memName’ }

where:

’secName’ is an ASCII string used to identify a SECTION.

’memName’ is a previously defined ACCESSBANK, SHAREBANK,
DATABANK, or CODEPAGE.

The ROM attribute must always refer to program memory previously defined
using a CODEPAGE directive. The RAM attribute must always refer to data
memory previously defined with a ACCESSBANK, DATABANK or
SHAREBANK directive.

Example:

To specify that a section whose name is ‘filter_coeffs’ be loaded into the
previously defined logical block of program memory named ‘constants’, the
following line should be added to the linker command file:

Example 5.4: Logical Section Definition

To place MPASM source code into the filter_coeffs section, use the
following line prior to the desired source code:

Example 5.5: Logical Section Usage

SECTION NAME=filter_coeffs ROM=constants

filter_coeffs CODE
 1999 Microchip Technology Inc. DS33014G-page 125

MPASM User’s Guide with MPLINK and MPLIB
5.7 STACK Definition
MPLAB-C17/C18 requires a software stack be set up. The following statement
specifies the stack size and an optional DATABANK where the stack is to be
allocated:

STACK SIZE=’allocSize’ [RAM=’memName’]

where:

’allocSize’ is the size in bytes of the stack and ’memName’ is the name of
a memory previously declared using a ACCESSBANK, DATABANK or
SHAREBANK statement.

Example:

To set the stack size to be ‘0x20’ in the RAM area previously defined by
gpr0, the following line should be added to the linker command file:

Example 5.6: Stack Definition

5.8 Linker Script Caveats
Some linker script caveats:

• You will likely need to modify the linker script files included with MPLINK
before using them.

• You will need to set stack size to use MPLAB-C17/C18 with MPLINK.

• You will need to split up memory pages if your code contains goto or
call instructions without PAGESEL pseudo-instructions.

• You cannot, in MPASM, switch back and forth to a section in a single
file, i.e., you cannot do this:

Example 5.7: MPASM Limitations

STACK SIZE=0x20 RAM=gpr0

CODE MY_ROM
 :
 (instructions)
 :
UDATA MY_VARS
 :
 (variables)
 :
CODE MY_ROM
 :
DS33014G-page 126 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 6. Linker Processing
2

M
P

L
IN

K

6.1 Introduction
This chapter discusses how linker processing works.

6.2 Highlights
Topics covered in this chapter:

• Linker Processing Overview

• Linker Allocation Algorithm

• Relocation Example

• Initialized Data

6.3 Linker Processing Overview
A linker combines multiple input object modules into a single executable
output module. The input object modules may contain relocatable or absolute
sections of code or data which the linker will allocate into target memory. The
target memory architecture is described in a linker command file. This linker
command file provides a flexible mechanism for specifying blocks of target
memory and maps sections to the specified memory blocks. If the linker can
not find a block of target memory in which to allocate a section, an error is
generated. The linker combines like-named input sections into a single output
section. The linker allocation algorithm is described below.

Once the linker has allocated all sections from all input modules into target
memory it begins the process of symbol relocation. The symbols defined in
each input section have addresses dependent upon the beginning of their
sections. The linker adjusts the symbol addresses based upon the ultimate
location of their allocated sections.

After the linker has relocated the symbols defined in each input section, it
resolves external symbols. The linker attempts to match all external symbol
references with a corresponding symbol definition. If any external symbol
references do not have a corresponding symbol definition, an attempt is made
to locate the corresponding symbol definition in the input library files. If the
corresponding symbol definition is not found, an error is generated.

If the resolution of external symbols was successful, the linker then proceeds
to patch each section’s raw data. Each section contains a list of relocation
entries which associate locations in a section's raw data with relocatable
symbols. The addresses of the relocatable symbols are patched into the raw
data. The process of relocating symbols and patching sections is described
below.
 1999 Microchip Technology Inc. DS33014G-page 127

MPASM User’s Guide with MPLINK and MPLIB
After the linker has processed all relocation entries, it generates the
executable output module.

6.4 Linker Allocation Algorithm
The linker allocates sections to allow maximal control over the location of
code and data, called “sections,” in target memory. There are four kinds of
allocations that the linker handles. Sections can be absolute or relocatable
(non-absolute), and they can be assigned target memory blocks in the linker
command file or they may be left unassigned. So, the following types of
allocations exist:

1. Absolute Assigned
2. Absolute Unassigned
3. Relocatable Assigned
4. Relocatable Unassigned

The linker performs allocation of absolute sections first, followed by
relocatable assigned sections, followed by relocatable unassigned sections.

6.4.1 Absolute Allocation
Absolute sections may be assigned to target memory blocks in the linker
command file. But, since the absolute section's address is fixed, the linker can
only verify that if there is an assigned target memory block for an absolute
section, the target memory block has enough space and the absolute section
does not overlap other sections. If no target memory block is assigned to an
absolute section, the linker tries to find the one for it. If one can not be located,
an error is generated. Since absolute sections can only be allocated at a fixed
address, assigned and unassigned sections are performed in no particular
order.

6.4.2 Relocatable Allocation
Once all absolute sections have been allocated, the linker allocates
relocatable assigned sections. For relocatable assigned sections, the linker
checks the assigned target memory block to verify that there is space
available, otherwise it’s an error. The allocation of relocatable assigned
sections occurs in the order in which they were specified in the linker
command file.

After all relocatable assigned sections have been allocated, the linker
allocates relocatable unassigned sections. The linker starts with the largest
relocatable unassigned section and works its way down to the smallest
relocatable unassigned section. For each allocation, it chooses the target
memory block with the smallest available space that can accommodate the
section. By starting with the largest section and choosing the smallest
accommodating space, the linker increases the chances of being able to
allocate all the relocatable unassigned sections.
DS33014G-page 128 1999 Microchip Technology Inc.

Linker Processing

2

M
P

L
IN

K

The stack is not a section but gets allocated along with the sections. The
linker command file may or may not assign the stack to a specific target
memory block. If the stack is assigned a target memory block, it gets allocated
just before the relocatable assigned sections are allocated. If the stack is
unassigned, then it gets allocated after the relocatable assigned sections and
before the other relocatable unassigned sections are allocated.

6.5 Relocation Example
The following example illustrates how the linker relocates sections. Suppose
the following source code fragment occurred in a file:

/* File: ref.c */
char var1; /* Line 1 */
void setVar1(void) { /* Line 2 */
 var1 = 0xFF; /* Line 3 */
}

Suppose this compiles into the following assembly instructions (note: this
example deliberately ignores any code generated by MPLAB-C17/C18 to
handle the function’s entry and exit):

0x0000 MOVLW 0xFF
0x0001 MOVLR ?? ; Need to patch with var1’s bank
0x0002 MOVWF ?? ; Need to patch with var1’s offset

When the compiler processes source line 1, it creates a symbol table entry for
the identifier var1 which has the following information:

Symbol[index] => name=var1, value=0, section=.data,
class=extern

When the compiler processes source line 3, it generates two relocation
entries in the code section for the identifier symbol var1 since its final address
is unknown until link time. The relocation entries have the following
information:

Reloc[index] => address=0x0001 symbol=var1 type=bank
Reloc[index] => address=0x0002 symbol=var1 type=offset

Once the linker has placed every section into target memory, the final
addresses are known. Once all identifier symbols have their final addresses
assigned, the linker must patch all references to these symbols using the
relocation entries. In the example above, the updated symbol might now be at
location 0x125:

Symbol[index] => name=var1, value=0x125, section=.data,
class=extern

If the code section above were relocated to begin at address 0x50, the
updated relocation entries would now begin at location 0x51:

Reloc[index] => address=0x0051 symbol=var1 type=bank
Reloc[index] => address=0x0052 symbol=var1 type=offset
 1999 Microchip Technology Inc. DS33014G-page 129

MPASM User’s Guide with MPLINK and MPLIB
The linker will step through the relocation entries and patch their
corresponding sections. The final assembly equivalent output for the above
example would be:

0x0050 MOVLW 0xFF
0x0051 MOVLR 0x1 ; Patched with var1’s bank
0x0052 MOVWF 0x25 ; Patched with var1’s offset

6.6 Initialized Data
MPLINK performs special processing for input sections with initialized data.
Initialized data sections contain initial values (initializers) for the variables and
constants defined within them. Because the variables and constants within an
initialized data section reside in RAM, their data must be stored in nonvolatile
program memory (ROM). For each initialized data section, the linker creates a
section in program memory. The data is moved by initializing code (supplied
with MPLAB-C17/C18 and MPASM) to the proper RAM location(s) at start-up.

The names of the initializer sections created by the linker are the same as the
initialized data sections with a “_i” appended. For example, if an input object
module contains an initialized data section named “.idata_main.o” the linker
will create a section in program memory with the name “.idata_main.o_i”
which contains the data.

In addition to creating initializer sections, the linker creates a section named
“.cinit” in program memory. The “.cinit” section contains a table with entries for
each initialized data section. Each entry is a triple which specifies where in
program memory the initializer section begins, where in data memory the
initialized data section begins, and how many bytes are in the initialized data
section. The boot code accesses this table and copies the data from ROM to
RAM.
DS33014G-page 130 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 7. Sample Application 1
2

M
P

L
IN

K

7.1 Highlights
Topics covered in this chapter:

• How to place program code in different memory regions

• How to place data tables in ROM memory

• How to set configuration bits in C

7.2 Overview
This example is for the PIC17C44 in extended microcontroller mode. It places
interrupt handling code written in assembly at 0x8000. The assembly code
directive, INTHAND CODE, places the code that follows into the INTHAND
section. The linker script maps the INTHAND section to the CODE region that
begins at 0x8000.

It also has a 0x1000 element data table in program memory in the same code
page with the interrupt handlers.

The data table is defined in C using the #pragma romdata directive to place
the table in a section called DATTBL. The linker script maps the DATTBL
section to the CODE region that begins at 0x8000.

The main function in the C file is placed in the default CODE section because
there is no section directive explicitly assigned.

Note: A code page in the PIC17CXXX family is 8K words, i.e., 0000 –
1FFF, 2000 – 3FFF, etc.
 1999 Microchip Technology Inc. DS33014G-page 131

MPASM User’s Guide with MPLINK and MPLIB
Figure 7.1: Program Memory Map – Sample Application 1

7.3 Building the Application
The source files for this sample application may be compiled by the included
batch file or through MPLAB.

The batch file app1.bat compiles this application. This file assumes that
MCC17, MPASM, and MPLINK can be found in your PATH statement. Also,
the MCC_INCLUDE environment variable should be set to point to MCC\H. You
can set these in your AUTOEXEC.BAT file and check them by going to the
MS-DOS prompt and typing SET. MPLINK sets the library path to
C:\MCC\LIB. If MPLAB-C17/C18 is installed somewhere else, change the
path in the MPLINK line of the batch file.

To build this application in an MPLAB project

1. Name new project APP1

• APP1.HEX – Becomes the top node of project

2. Set MPLINK as the language tool for APP1.HEX
3. Add these nodes to the project and set the language tools.

• eeprom.asm – set MPASMWIN as the language tool

• eeprom1.c – set MPLAB-C17/C18 as the language tool

• eeprom.lkr

• p17C44.o – this is in mcc\lib

• C0L17.O – this is in mcc\lib

• IDATA17.O – this is in mcc\lib

0x0000
Vectors

0x0028

0x0029 Main Application Code
(on-chip)0x1FFF

0x2000 Main Application Code
(external)0x3FFF

0x4000

0x7FFF

0x8000
Interrupt Handlers

0x87FE

0x87FF
Data Tables

0x9FFF

0xA000

0xFFFF

Code Regions
0-28 – vectors
29-1FFF – code, on-chip
2000-3FFF – code, external
8000-9FFF – protected

Interrupt handlers: ASM
Main code: C
DS33014G-page 132 1999 Microchip Technology Inc.

Sample Application 1

2

M
P

L
IN

K

4. Edit the APP1 MPLAB Project, since one of the files includes the
P17C44.H header file:

• Include path = c:\mcc\h

7.4 Source Code
EEPROM.ASM – contains a list directive, a code directive with section
INTHAND, and a place for putting interrupt handler code.

EEPROM1.C – contains a 0x1000 data array placed in romdata section
DATTBL, and a main function in the default code section.

EEPROM.LKR – contains the PIC17C44 description with a protected CODE
region from 0x8000 to 0x9FFF. The sections INTHAND and DATTBL are
mapped into the protected CODE region.

7.4.1 eeprom.asm

Note: When linking, you may get the following message:
“Warning – Could not open source file '<filename>'.
This file will not be present in the list file.”
This comes from using precompiled libraries, where the source for
these libraries is not in the default directory.

; EEPROM.ASM

LIST p=17c44

#include "p17c44.inc"

INTHAND CODE

; place interrupt handling code in here

END
 1999 Microchip Technology Inc. DS33014G-page 133

MPASM User’s Guide with MPLINK and MPLIB
7.4.2 eeprom1.c

/* EEPROM1.C */

#include "p17c44.h"

#define DATA_SIZE 0x1000

#pragma romdata DATTBL // put following romdata into section DATTBL
unsigned rom data[DATA_SIZE];

#pragma romdata // set back to default romdata section
/* Main application code for default CODE section */
void main(void)
{
 while(1)
 {

 } /* end while */

} /* end main */
DS33014G-page 134 1999 Microchip Technology Inc.

Sample Application 1

2

M
P

L
IN

K

7.4.3 eeprom.lkr

// File: EEPROM.LKR PIC17C44

LIBPATH .

CODEPAGE NAME=vectors START=0x0 END=0x27 PROTECTED
CODEPAGE NAME=page START=0x28 END=0x1FFF
CODEPAGE NAME=eeprom START=0x8000 END=0x9FFF PROTECTED

SHAREBANK NAME=gprshare START=0x1A END=0x1F
SHAREBANK NAME=gprshare START=0x11A END=0x11F
SHAREBANK NAME=gprshare START=0x21A END=0x21F
SHAREBANK NAME=gprshare START=0x31A END=0x31F

DATABANK NAME=gpr0 START=0x20 END=0xFF
DATABANK NAME=gpr1 START=0x120 END=0x1FF

SHAREBANK NAME=sfrnobnk START=0x0 END=0xF PROTECTED
SHAREBANK NAME=sfrnobnk START=0x100 END=0x10F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x200 END=0x20F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x300 END=0x30F PROTECTED

SHAREBANK NAME=sfrprod START=0x18 END=0x19 PROTECTED
SHAREBANK NAME=sfrprod START=0x118 END=0x119 PROTECTED
SHAREBANK NAME=sfrprod START=0x218 END=0x219 PROTECTED
SHAREBANK NAME=sfrprod START=0x318 END=0x319 PROTECTED

DATABANK NAME=sfr0 START=0x10 END=0x17 PROTECTED
DATABANK NAME=sfr1 START=0x110 END=0x117 PROTECTED
DATABANK NAME=sfr2 START=0x210 END=0x217 PROTECTED
DATABANK NAME=sfr3 START=0x310 END=0x317 PROTECTED

SECTION NAME=STARTUP ROM=vectors // Reset and interrupt vectors
SECTION NAME=PROG ROM=page // main application code space
SECTION NAME=INTHAND ROM=eeprom // Interrupt handlers
SECTION NAME=DATTBL ROM=eeprom // Data tables

STACK SIZE=0x3F RAM=gpr0
 1999 Microchip Technology Inc. DS33014G-page 135

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 136 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 8. Sample Application 2
2

M
P

L
IN

K

8.1 Highlights
Topics covered in this chapter:

• How to partition memory for a boot loader

• How to compile code that will be loaded into external RAM and exe-
cuted

8.2 Overview
Many applications require field-updateable firmware. The PIC17CXXX family
of processors supports this in a straightforward manner in extended
microcontroller mode. This example uses a PIC17C44.

A simple boot loader is located in on-chip program memory, possibly with one
or more support functions that may be called by the firmware. The primary
firmware is located in off-chip program memory. The program memory data
tables are located in the appropriate memory region as an assigned section.

Figure 8.1: Program Memory Map – Sample Application 2

0x0000
Vectors

0x0028

0x0029
Boot Loader

0x07FF

0x0800 Main Application Code
(on-chip)0x1FFF

0x2000 Main Application Code
(external)0x3FFF

0x4000
Data Tables

0x7FFF

0x8000

0xFFFF

Code Regions - Boot
0-28 – vectors
29-7FF – loader

Code Regions - Firmware
800-1FFF – code, on-chip
2000 - 3FFF – code, external
4000 - 7FFF – data tables
 1999 Microchip Technology Inc. DS33014G-page 137

MPASM User’s Guide with MPLINK and MPLIB
8.3 Building the Application
The source files for this sample application may be compiled by the included
batch file or through MPLAB.

The batch file app2.bat compiles this application. This file assumes that
MCC17, MPASM, and MPLINK can be found in your PATH statement. Also,
the MCC_INCLUDE environment variable should be set to point to MCC\H. You
can set these in your AUTOEXEC.BAT file and check them by going to the MS-
DOS prompt and typing SET. MPLINK sets the library path to C:\MCC\LIB. If
MPLAB-C17/C18 is installed somewhere else, change the path in the
MPLINK line of the batch file.

This application consists of two separate object files, one that will be
programmed into a PIC17C44, and another that will be downloadable
firmware that can be loaded into external program memory.

To build this application in an MPLAB project, two projects need to be created
and built. Set up the first project to build the boot loader:

1. Name new project APP2BOOT

• APP2BOOT.HEX – Becomes the top node of project

2. Set MPLINK as the language tool for APP1.HEX
3. Add these nodes to the project and set the language tools.

• boot.c – set MPLAB-C17/C18 as the language tool

• loader.lkr

• C0S17.O – this is in mcc\lib

4. Edit the APP2BOOT MPLAB Project

• Library path = c:\mcc\lib

5. Build project, then save and close.

Set up a second project to compile the firmware:

1. Name new project APP2

• APP2.HEX – Becomes the top node of project

2. Set MPLINK as the language tool for APP1.HEX
3. Add these nodes to the project and set the language tools.

• fwentry.asm – set MPASMWIN as the language tool

• firmware.c – set MPLAB-C17/C18 as the language tool

• fwtables.c – set MPLAB-C17/C18 as the language tool

• firmware.lkr

4. Edit the APP1 MPLAB Project:

• Library path = c:\mcc\lib (or where your mcc\lib is located)

5. Build project, save and close.

DS33014G-page 138 1999 Microchip Technology Inc.

Sample Application 2

2

M
P

L
IN

K

8.4 Source Code – Boot Loader
boot.c – The boot loader code copies the firmware into external program
memory and jumps to a pre-defined address which is the entry point of the
firmware. A firmware-callable support function is supplied at a fixed address
as well.

loader.lkr – The boot loader linker script defines only those regions of
program memory which are on-chip.

Note: When linking, you may get the following message:
“Warning – Could not open source file '<filename>'.
This file will not be present in the list file.”
This comes from using precompiled libraries, where the source for
these libraries is not in the default directory.
 1999 Microchip Technology Inc. DS33014G-page 139

MPASM User’s Guide with MPLINK and MPLIB
8.4.1 boot.c
#include <p17c44.h>

/* The firware entry point is defined to be at 0x4000 */
#define FW_ENTRY 0x4000

#define LGOTO(x) {_asm movlw high (x) movwf PCLATH movlw (x) movwf PCL _endasm}

void load_firmware(void);

void load_firmware(void)
{
 /* Do whatever needs to be done to load in the firmware
 * into external memory.
 */
}

void main(void)
{
 load_firmware();
 LGOTO(FW_ENTRY);
}

/* We’ll provide a function for the firmware to call to output a character
 * to an LCD display.
 *
 * We need the function at a hard address so we can define the entry
 * point in the firmware.
 */
#pragma code out_lcd=0x1000

void out_lcd(unsigned char);

void out_lcd(unsigned char ch)
{
 /* Do whatever needs doing */
}

#pragma romdata CONFIG
// The following config bit definitions are from the P17C44.INC header file:
#define _PMC_MODE 0x7FAF
#define _XMC_MODE 0xFFBF
#define _MC_MODE 0xFFEF
#define _MP_MODE 0xFFFF

#define _WDT_NORM 0xFFF3
#define _WDT_OFF 0xFFF3
#define _WDT_64 0xFFF7
#define _WDT_256 0xFFF
#define _WDT_1 0xFFFF

#define _LF_OSC 0xFFFC
#define _RC_OSC 0xFFFD
#define _XT_OSC 0xFFFE
#define _EC_OSC 0xFFFF

rom const unsigned int my_config = _MC_MODE & _WDT_OFF & _XT_OSC ;
DS33014G-page 140 1999 Microchip Technology Inc.

Sample Application 2

2

M
P

L
IN

K

8.4.2 loader.lkr
LIBPATH . // Add a directory to the library search path
LIBPATH c:\work\mcc\cc\install\lib
FILES p17c44.o

CODEPAGE NAME=reset_vector START=0x0000 END=0x0027 // Reset Vector
CODEPAGE NAME=page0 START=0x0028 END=0x1FFF // On chip memory
CODEPAGE NAME=page1 START=0x2000 END=0x3FFF // On chip memory
CODEPAGE NAME=config START=0xFE00 END=0xFE0F PROTECTED

SHAREBANK NAME=sharedsfr START=0x00 END=0x0f PROTECTED
DATABANK NAME=sfr0 START=0x10 END=0x17 PROTECTED
DATABANK NAME=sfr1 START=0x110 END=0x117 PROTECTED
DATABANK NAME=sfr2 START=0x210 END=0x217 PROTECTED
DATABANK NAME=sfr3 START=0x310 END=0x317 PROTECTED
DATABANK NAME=sfr4 START=0x410 END=0x417 PROTECTED
DATABANK NAME=sfr5 START=0x510 END=0x517 PROTECTED
DATABANK NAME=sfr6 START=0x610 END=0x617 PROTECTED
DATABANK NAME=sfr7 START=0x710 END=0x717 PROTECTED
SHAREBANK NAME=registers START=0x18 END=0x1f PROTECTED
DATABANK NAME=gpr0 START=0x20 END=0xEF // General purpose RAM bank 0
DATABANK NAME=gpr1 START=0x120 END=0x1FB // General purpose RAM bank 1

DATABANK NAME=stack START=0xF0 END=0xFF PROTECTED // Stack RAM

SECTION NAME=CONFIG ROM=config// configuration bits location

STACK SIZE=0x0F RAM=stack
 1999 Microchip Technology Inc. DS33014G-page 141

MPASM User’s Guide with MPLINK and MPLIB
8.5 Source Code – Firmware
firmware.c – The entry function is located in an absolute section at the pre-
determined firmware entry point. The rest of the firmware is located by the
linker.

fwtables.c – The program memory data tables are defined in a data section
which will be located by the linker.

fwentry.h – The support functions are prototyped just as any other C callable
function.

fwentry.asm – For the firmware, the linker needs a symbol at the entry point
address for each function.

firmware.lkr – The firmware linker script defines protected regions form the
program memory data tables and the on-chip support functions. The rest of
external memory is defined as available for use.

8.5.1 firmware.c

8.5.2 fwtables.c

#include <p17c44.h>
#include "fwentry.h"

void fw_entry_func(void);
void signon(void);

#pragma code fw_entry = 0x4000
void fw_entry_func(void)
{
 /* signon message */
 signon();

 /* do whatever needs doing... */

 while(1);
}
#pragma code // we don’t care where the rest of stuff goes

void signon(void)
{
 static const rom char msg[] = "FW v1.00";
 rom char *p;
 for(p=msg ; *p != 0 ; p++)
 out_lcd(*p);
}

#include <p17c44.h>

#pragma romdata fw_tables

rom unsigned datatable[] = {
 0x0000,
 0x0001,
 0x0002,
 0x0003,
 0x0004,
 0x0005,
 0x0006,
 0x0007,
 0x0008,
 };
DS33014G-page 142 1999 Microchip Technology Inc.

Sample Application 2

2

M
P

L
IN

K

8.5.3 fwentry.h

8.5.4 fwentry.asm

8.5.5 firmware.lkr

#ifndef FWENTRY_H
#define FWENTRY_H

void out_lcd(unsigned char ch);

#endif

; Provide symbols at the appropriate addresses for the system routines
; in ROM which the firmware can call. The actual code for these routines
; is in the bootloader in ROM, these are just place-holders.

 LIST P=17c44

 GLOBAL out_lcd

OUTLCDENTRY CODE 0x1000
out_lcd
 END

LIBPATH . // Add a directory to the library search path
LIBPATH c:\work\mcc\cc\install\lib
FILES p17c44.o

//CODEPAGE NAME=reset_vector START=0x0000 END=0x0027 // Reset Vector
// For off-chip firmware, we don’t want anything located in the
// on-chip address space.
//
// We make some of the on-chip stuff PROTECTED because we put
// the entry points to the bootloader which the firmware calls
// in there. No code will actuall go there, but we need to
// locate empty sections there to get the relocations.
CODEPAGE NAME=entrypoints START=0x1000 END=0x3fff PROTECTED

CODEPAGE NAME=firmware START=0x4000 END=0x5FFF
CODEPAGE NAME=tables START=0x6000 END=0x7FFF PROTECTED

SHAREBANK NAME=sharedsfr START=0x00 END=0x0f PROTECTED
DATABANK NAME=sfr0 START=0x10 END=0x17 PROTECTED
DATABANK NAME=sfr1 START=0x110 END=0x117 PROTECTED
DATABANK NAME=sfr2 START=0x210 END=0x217 PROTECTED
DATABANK NAME=sfr3 START=0x310 END=0x317 PROTECTED
DATABANK NAME=sfr4 START=0x410 END=0x417 PROTECTED
DATABANK NAME=sfr5 START=0x510 END=0x517 PROTECTED
DATABANK NAME=sfr6 START=0x610 END=0x617 PROTECTED
DATABANK NAME=sfr7 START=0x710 END=0x717 PROTECTED
SHAREBANK NAME=registers START=0x18 END=0x1f PROTECTED
DATABANK NAME=gpr0 START=0x20 END=0xEF // General purpose RAM bank 0
DATABANK NAME=gpr1 START=0x120 END=0x1FF // General purpose RAM bank 1

DATABANK NAME=stack START=0xF0 END=0xFF PROTECTED // Stack RAM

STACK SIZE=0x0F RAM=stack
 1999 Microchip Technology Inc. DS33014G-page 143

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 144 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 9. Sample Application 3
2

M
P

L
IN

K

9.1 Highlights
Topics covered in this chapter:

• How to access peripherals that are memory mapped

• How to create new sections

9.2 Overview
The example has two external devices; a DAC at 0x8000 and an IRD at
0x9000.

The code declares multiple variables at each of the two locations 0x8000 and
0x9000. When one of these variables is read or written, the device at the
location of the variable is read from or written to. The directive #pragma
romdata creates an absolute section at the specified memory location.

The linker script file declares code pages for each device and for the program
memory. The code page for each device is set to PROTECTED to prevent the
linker from placing unassigned relocatable sections into this memory block.
The linker script file also has sections declared for the code0 and code1 code
pages. The section names are used with the directive #pragma code so the
linker will place the code following the #pragma in that section's memory
location.
 1999 Microchip Technology Inc. DS33014G-page 145

MPASM User’s Guide with MPLINK and MPLIB
Figure 9.1: Program Memory Map – Sample Application 3

0x0000
Vectors

0x0028

0x0029
Code Page 0

0x1FFF

0x2000
Code Page 1

0x3FFF

0x8000
Device 1 - DAC

0x800F

0x9000
Device 2 - IRD

0x9001

0xFFFF

Code Regions
0-28 – vectors
29-1FFF – code page 0
2000-3FFF – code page 1
8000 - 800F – device 1 (protected)
9000 - 9001 – device 2 (protected)

Code Page 0 & 1: C
DS33014G-page 146 1999 Microchip Technology Inc.

Sample Application 3

2

M
P

L
IN

K

9.3 Building the Application
The source files for this sample application may be compiled by the included
batch file or through MPLAB.

The batch file app3.bat compiles this application. This file assumes that
MCC17, MPASM, and MPLINK can be found in your PATH statement. Also,
the MCC_INCLUDE environment variable should be set to point to MCC\H. You
can set these in your AUTOEXEC.BAT file and check them by going to the MS-
DOS prompt and typing SET. MPLINK sets the library path to C:\MCC\LIB. If
MPLAB-C17/C18 is installed somewhere else, change the path in the
MPLINK line of the batch file.

To build this application in an MPLAB project

1. Name new project APP3

• APP3.HEX – Becomes the top node of project

2. Set MPLINK as the language tool for APP1.HEX
3. Add these nodes to the project and set the language tools.

• memmapio.c – set MPLAB-C17/C18 as the language tool

• memmapio.lkr

• p17C756.o – this is in mcc\lib

4. Edit the APP1 MPLAB Project:

• Library path = c:\mcc\lib

Note: When linking, you may get the following message:
“Warning – Could not open source file '<filename>'.
This file will not be present in the list file.”
This comes from using precompiled libraries, where the source for
these libraries is not in the default directory.

Note: Additionally, you will get a message:
“Warning[2003]...\MEMMAPIO.C 25 :
'rom' and 'volatile' in same declaration”
This message is normal and is just reminding you that the compiler
will treat the variable as the application requires.
 1999 Microchip Technology Inc. DS33014G-page 147

MPASM User’s Guide with MPLINK and MPLIB
9.4 Source Code

9.4.1 memmapio.c

#include <P17C756.H>

void main(void);

#pragma romdata dev1 = 0x8000
unsigned rom loc0;
unsigned rom loc1;
unsigned rom loc2;
unsigned rom loc3;
unsigned rom loc4;
unsigned rom loc5;
unsigned rom loc6;
unsigned rom loc7;
unsigned rom loc8;
unsigned rom loc9;
unsigned rom loca;
unsigned rom locb;
unsigned rom locc;
unsigned rom locd;
unsigned rom loce;
unsigned rom locf;

#pragma romdata dev2 = 0x9000
const volatile unsigned rom inp;
unsigned rom outp;

#pragma code code0
void main(void)
{
 unsigned int input;

 loc0 = 0;
 loc1 = 1;

 input = inp;
 outp = 0x7;
}

DS33014G-page 148 1999 Microchip Technology Inc.

Sample Application 3

2

M
P

L
IN

K

 1999 Microchip Technology Inc. DS33014G-page 149

9.4.2 memmapio.lkr

// File: memmapio.lkr
// Sample linker command file for 17C756, 17C756A, 17C766
// 12/16/97

LIBPATH .

CODEPAGE NAME=vectors START=0x0 END=0x27 PROTECTED
CODEPAGE NAME=code0 START=0x28 END=0x1fff
CODEPAGE NAME=code1 START=0x2000 END=0x3FFF
CODEPAGE NAME=device1 START=0x8000 END=0x800F PROTECTED
CODEPAGE NAME=device2 START=0x9000 END=0x9001 PROTECTED
CODEPAGE NAME=config START=0xFE00 END=0xFE0F PROTECTED

SHAREBANK NAME=sfrnobnk START=0x0 END=0xF PROTECTED
SHAREBANK NAME=sfrnobnk START=0x100 END=0x10F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x200 END=0x20F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x300 END=0x30F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x400 END=0x40F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x500 END=0x50F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x600 END=0x60F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x700 END=0x70F PROTECTED

DATABANK NAME=sfr0 START=0x10 END=0x17 PROTECTED
DATABANK NAME=sfr1 START=0x110 END=0x117 PROTECTED
DATABANK NAME=sfr2 START=0x210 END=0x217 PROTECTED
DATABANK NAME=sfr3 START=0x310 END=0x317 PROTECTED
DATABANK NAME=sfr4 START=0x410 END=0x417 PROTECTED
DATABANK NAME=sfr5 START=0x510 END=0x517 PROTECTED
DATABANK NAME=sfr6 START=0x610 END=0x617 PROTECTED
DATABANK NAME=sfr7 START=0x710 END=0x717 PROTECTED

SHAREBANK NAME=sfrprod START=0x18 END=0x19 PROTECTED
SHAREBANK NAME=sfrprod START=0x118 END=0x119 PROTECTED
SHAREBANK NAME=sfrprod START=0x218 END=0x219 PROTECTED
SHAREBANK NAME=sfrprod START=0x318 END=0x319 PROTECTED
SHAREBANK NAME=sfrprod START=0x418 END=0x419 PROTECTED
SHAREBANK NAME=sfrprod START=0x518 END=0x519 PROTECTED
SHAREBANK NAME=sfrprod START=0x618 END=0x619 PROTECTED
SHAREBANK NAME=sfrprod START=0x718 END=0x719 PROTECTED

SHAREBANK NAME=registers START=0x1A END=0x1F PROTECTED
SHAREBANK NAME=registers START=0x11A END=0x11F PROTECTED
SHAREBANK NAME=registers START=0x21A END=0x21F PROTECTED
SHAREBANK NAME=registers START=0x31A END=0x31F PROTECTED
SHAREBANK NAME=registers START=0x41A END=0x41F PROTECTED
SHAREBANK NAME=registers START=0x51A END=0x51F PROTECTED
SHAREBANK NAME=registers START=0x61A END=0x61F PROTECTED
SHAREBANK NAME=registers START=0x71A END=0x71F PROTECTED

DATABANK NAME=gpr0 START=0x20 END=0xFF
DATABANK NAME=gpr1 START=0x120 END=0x1FF
DATABANK NAME=gpr2 START=0x220 END=0x2FF
DATABANK NAME=gpr3 START=0x320 END=0x3FF

SECTION NAME=code0 ROM=code0
SECTION NAME=code1 ROM=code1

// The stack directive below is for use with MPLAB-C17/C18
STACK SIZE=0x20

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 150 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 10. Sample Application 4
2

M
P

L
IN

K

10.1 Highlights
Topic covered in this chapter:

• How to manually partition RAM space for program usage

10.2 Overview
You are given a PIC17C756 small-model, microcontroller-mode project,
morse.pjt, that retrieves a Morse code pattern from USART1 and outputs
that pattern to PORTB. It consists of the following source files:

The linker script file and source code locate the data memory as described in
Figure 10.1.

main.c main program to output a Morse code pattern to PORTB

morse.c subroutines that output a Morse code pattern to PORTB

morse.h header file for morse.c – defines function prototypes and
defines important constants (e.g., input pattern represen-
tation)

usart.c subroutines that handle getting input from USART1

usart.h header file for usart.c – defines function prototypes

portb.c subroutines that handle getting output to PORTB

portb.h header file for portb.c – defines function prototypes

delayms.asm subroutine that performs a time delay (calculations are
based on a 4 Mhz clock)

delayms.h header file for delayms.asm – defines function prototypes

morse756.lkr linker script file containing no sections, and configured for
the small memory model
 1999 Microchip Technology Inc. DS33014G-page 151

MPASM User’s Guide with MPLINK and MPLIB
Figure 10.1: Register File Map – Sample Application 4

0x0000

0x001A
Quick Access Data

0x001F

0x0020
Software Stack

0x004F

0x0050
Data 0 Buffer

0x01FF

0x0220
Data 1 Buffer

0x02FF

0x0320
Data 2 Buffer

0x03FF

Data Regions
1A-1F –global pointers (protected) –

CurrentBufferWritePos and CurrentBufferReadPos
20 - 4F – sw stack (size should increase to 0x30 bytes)
50 - 1FF – data 0 - from morse.c
220 - 2FF – data 1 – from delayms.asm
320 - 3FF – data 2 – all other

Buffer access code: ASM
Buffer date: ASM
Main code: C
Main data declarations: C
Quick access data: C
DS33014G-page 152 1999 Microchip Technology Inc.

Sample Application 4

2

M
P

L
IN

K

10.3 Building the Application
The source files for this sample application may be compiled by the included
batch file or through MPLAB.

The batch file app4.bat compiles this application. This file assumes that
MCC17, MPASM, and MPLINK can be found in your PATH statement. Also,
the MCC_INCLUDE environment variable should be set to point to MCC\H. You
can set these in your AUTOEXEC.BAT file and check them by going to the MS-
DOS prompt and typing SET. MPLINK sets the library path to C:\MCC\LIB. If
MPLAB-C17/C18 is installed somewhere else, change the path in the
MPLINK line of the batch file.

To build this application in an MPLAB project

1. Name new project APP1

• APP4.HEX – Becomes the top node of project

2. Set MPLINK as the language tool for APP4.HEX
3. Add these nodes to the project and set the language tools:.

• delayms.asm – set MPASM as the language tool

• main.c – set MPLAB-C17/C18 as the language tool

• morse.c – set MPLAB-C17/C18 as the language tool

• portb.c – set MPLAB-C17/C18 as the language tool

• usart.c – set MPLAB-C17/C18 as the language tool

• morse756.lkr

• p17C756.o – this is in mcc\lib

• C0L17.O – this is in mcc\lib

• IDATA17.O – this is in mcc\lib

• PMC756L.LIB – this is in mcc\lib

• INT756L.LIB – this is in mcc\lib

Note: When linking, you may get the following message:
“Warning – Could not open source file '<filename>'.
This file will not be present in the list file.”
This comes from using precompiled libraries, where the source for
these libraries is not in the default directory.
 1999 Microchip Technology Inc. DS33014G-page 153

MPASM User’s Guide with MPLINK and MPLIB
10.4 Source Code

10.4.1 morse756.lkr
// File: morse756.lkr

LIBPATH .

CODEPAGE NAME=vectors START=0x0 END=0x27 PROTECTED
CODEPAGE NAME=page0 START=0x28 END=0x1FFF
CODEPAGE NAME=page1 START=0x2000 END=0x3FFF PROTECTED
CODEPAGE NAME=config START=0xFE00 END=0xFE0F PROTECTED

SHAREBANK NAME=sfrnobnk START=0x0 END=0xF PROTECTED
SHAREBANK NAME=sfrnobnk START=0x100 END=0x10F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x200 END=0x20F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x300 END=0x30F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x400 END=0x40F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x500 END=0x50F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x600 END=0x60F PROTECTED
SHAREBANK NAME=sfrnobnk START=0x700 END=0x70F PROTECTED

DATABANK NAME=sfr0 START=0x10 END=0x17 PROTECTED
DATABANK NAME=sfr1 START=0x110 END=0x117 PROTECTED
DATABANK NAME=sfr2 START=0x210 END=0x217 PROTECTED
DATABANK NAME=sfr3 START=0x310 END=0x317 PROTECTED
DATABANK NAME=sfr4 START=0x410 END=0x417 PROTECTED
DATABANK NAME=sfr5 START=0x510 END=0x517 PROTECTED
DATABANK NAME=sfr6 START=0x610 END=0x617 PROTECTED
DATABANK NAME=sfr7 START=0x710 END=0x717 PROTECTED

SHAREBANK NAME=sfrprod START=0x18 END=0x19 PROTECTED
SHAREBANK NAME=sfrprod START=0x118 END=0x119 PROTECTED
SHAREBANK NAME=sfrprod START=0x218 END=0x219 PROTECTED
SHAREBANK NAME=sfrprod START=0x318 END=0x319 PROTECTED
SHAREBANK NAME=sfrprod START=0x418 END=0x419 PROTECTED
SHAREBANK NAME=sfrprod START=0x518 END=0x519 PROTECTED
SHAREBANK NAME=sfrprod START=0x618 END=0x619 PROTECTED
SHAREBANK NAME=sfrprod START=0x718 END=0x719 PROTECTED

SHAREBANK NAME=share0 START=0x1A END=0x1F PROTECTED
SHAREBANK NAME=share0 START=0x11A END=0x11F PROTECTED
SHAREBANK NAME=share0 START=0x21A END=0x21F PROTECTED
SHAREBANK NAME=share0 START=0x31A END=0x31F PROTECTED
SHAREBANK NAME=share0 START=0x41A END=0x41F PROTECTED
SHAREBANK NAME=share0 START=0x51A END=0x51F PROTECTED
SHAREBANK NAME=share0 START=0x61A END=0x61F PROTECTED
SHAREBANK NAME=share0 START=0x71A END=0x71F PROTECTED

DATABANK NAME=stackram START=0x20 END=0x4F PROTECTED
DATABANK NAME=gpr0 START=0x50 END=0xFF PROTECTED
DATABANK NAME=gpr1 START=0x120 END=0x1FF PROTECTED
DATABANK NAME=gpr2 START=0x220 END=0x2FF PROTECTED
DATABANK NAME=gpr3 START=0x320 END=0x3FF

// Put your sections here
SECTION NAME=global_vars RAM=share0
SECTION NAME=morse_dat RAM=gpr0
SECTION NAME=morse_buf RAM=gpr1
SECTION NAME=delay_dat RAM=gpr2

// The stack directive below is for use with MPLAB-C17/C18
STACK SIZE=0x30 RAM=stackram
DS33014G-page 154 1999 Microchip Technology Inc.

Sample Application 4

2

M
P

L
IN

K

10.4.2 main.c

10.4.3 morse.h

#include "usart.h"
#include "morse.h"
#include "delayms.h"
#include <p17c756.h>

void main(void)
{
 InitializeMorseTable();
 Install_INT(GetMorseFromUSART);
 InitializeUSART();

 while(DisplayNextMorseVal())
 {
 DelayXMS(100);
 }

 TerminateUSARTInput();
}

#ifndef _MORSE_H_
#define _MORSE_H_

#define MORSE_BUFFER_SIZE 220

#define DOT 1
#define DASH 2
#define TERMINATE 3

#define DOT_LENGTH 100
#define DASH_LENGTH 250

void InitializeMorseTable(void);
unsigned char DisplayNextMorseVal(void);

#endif
 1999 Microchip Technology Inc. DS33014G-page 155

MPASM User’s Guide with MPLINK and MPLIB
10.4.4 morse.c
#include "portb.h"
#include "morse.h"
#include "delayms.h"

#pragma udata shared global_vars
unsigned char *CurrentBufferWritePos;
unsigned char *CurrentBufferReadPos;

#pragma udata morse_buf
unsigned char USARTBuffer[MORSE_BUFFER_SIZE];

#pragma udata morse_dat
void InitializeMorseTable(void)
{
 CurrentBufferWritePos = USARTBuffer;
 CurrentBufferReadPos = USARTBuffer;
 PortBInitialize();
}

unsigned char DisplayNextMorseVal(void)
{
 unsigned int HoldTime;

 if(CurrentBufferReadPos == CurrentBufferWritePos)
 return 1;

 if(CurrentBufferReadPos == USARTBuffer)
 CurrentBufferReadPos = USARTBuffer + MORSE_BUFFER_SIZE - 1;
 else
 CurrentBufferReadPos--;

 switch(*CurrentBufferReadPos)
 {
 case TERMINATE:
 return 0;

 case DOT:
 HoldTime = DOT_LENGTH;
 break;

 case DASH:
 HoldTime = DASH_LENGTH;
 break;

 default:
 return 1;
 }

 PortBOutput(0xFF);
 DelayXMS(HoldTime);
 PortBOutput(0x00);
 DelayXMS(HoldTime);
 return 1;
}

DS33014G-page 156 1999 Microchip Technology Inc.

Sample Application 4

2

M
P

L
IN

K

10.4.5 portb.h

10.4.6 portb.c

10.4.7 usart.h

#ifndef _PORTB_H_
#define _PORTB_H_

void PortBInitialize(void);
void PortBOutput(unsigned char OutputValue);

#endif

#include "portb.h"
#include <p17C756.h>

void PortBInitialize(void)
{
 PORTB = 0xff; // Clear Port B register
 DDRB = 0x00; // Set Port B as output
}

void PortBOutput(unsigned char OutputValue)
{
 PORTB = 0xff; // Clear Port B register
 PORTB = OutputValue; // Write value out
}

#ifndef _USART_H_
#define _USART_H_

void InitializeUSART(void);
void TerminateUSARTInput(void);
void GetMorseFromUSART(void);

#endif
 1999 Microchip Technology Inc. DS33014G-page 157

MPASM User’s Guide with MPLINK and MPLIB
10.4.8 usart.c

10.4.9 delayms.h

#include "usart.h"
#include "morse.h"
#include <usart16.h>
#include <p17C756.h>

extern unsigned char USARTBuffer[];
extern unsigned char *CurrentBufferWritePos;
extern unsigned char *CurrentBufferReadPos;

void InitializeUSART(void)
{
 OpenUSART1(USART_TX_INT_ON & USART_ASYNCH_MODE &
 USART_EIGHT_BIT & USART_CONT_RX, 1);
}

void TerminateUSARTInput(void)
{
 CloseUSART1();
}

void GetMorseFromUSART(void)
{
 /* Wrap if we are at the end of the buffer */
 if(CurrentBufferWritePos >= (USARTBuffer + MORSE_BUFFER_SIZE - 1))
 {
 /* Unless buffer is full, increment position */
 if(CurrentBufferReadPos != USARTBuffer)
 CurrentBufferWritePos = USARTBuffer;

 }
 else
 {
 /* Unless buffer is full, increment position */
 if(CurrentBufferReadPos != (CurrentBufferWritePos + 1))
 {
 CurrentBufferWritePos++;
 }
 }

 *CurrentBufferWritePos = ReadUSART1();
}

#ifndef _DELAYMS_H_
#define _DELAYMS_H_

void DelayXMS(unsigned int time);

#endif
DS33014G-page 158 1999 Microchip Technology Inc.

Sample Application 4

2

M
P

L
IN

K

10.4.10 delayms.asm
 list p=17c756
 #include <p17c756.inc>

 EXTERN _stack
 GLOBAL DelayXMS

delay_dat UDATA
MSB RES 1
LSB RES 1

 CODE
DelayXMS:
 banksel _stack
 movfp _stack,FSR0
 decf FSR0,f
 movfp INDF0,MSB
 decf FSR0,f
 movfp INDF0,LSB
dly1:
 nop
 nop
 decfsz LSB,1
 goto dly1
 decfsz MSB,1
 goto dly1
 return

 end
 1999 Microchip Technology Inc. DS33014G-page 159

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 160 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Part 3 – MPLIB
3

M
P

L
IB
Chapter 1. MPLIB Preview ..163

Chapter 2. MPLIB – Installation and Getting Started165

Chapter 3. Using MPLIB ..167
 1999 Microchip Technology Inc. DS33014G-page 161

MPASM User’s Guide with MPLINK and MPLIB
DS33014G-page 162 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 1. MPLIB Preview
3

M
P

L
IB
1.1 Introduction
Topics covered in this chapter.

1.2 Highlights
Topics covered in this chapter:

• What MPLIB Is

• What MPLIB Does

• How MPLIB Helps You

1.3 What MPLIB Is
MPLIB is a librarian for use with COFF object modules (filename.o)
created using either MPASM v2.0, MPASMWIN v2.0, or MPLAB-C v2.0 or
later.

1.4 What MPLIB Does
A librarian manages the creation and modification of library files. A library file
is simply a collection of object modules that are stored in a single file. There
are several reasons for creating library files:

• Libraries make linking easier. Since library files can contain many object
files, the name of a library file can be used instead of the names of
many separate object files when linking.

• Libraries help keep code small. Since a linker only uses the required
object files contained in a library, not all object files which are contained
in the library necessarily wind up in the linker's output module.

• Libraries make projects more maintainable. If a library is included in a
project, the addition or removal of calls to that library will not require a
change to the link process.

• Libraries help to convey the purpose of a group of object modules.
Since libraries can group together several related object modules, the
purpose of a library file is usually more understandable than the pur-
pose of its individual object modules. For example, the purpose of a file
named 'math.lib' is more apparent than the purpose of ‘power.o’,
‘ceiling.o’, and ‘floor.o’.
 1999 Microchip Technology Inc. DS33014G-page 163

MPASM User’s Guide with MPLINK and MPLIB
1.5 How MPLIB Helps You
MPLIB can help you in the following ways:

• MPLIB makes linking easier because single libraries can be included
instead of many smaller files.

• MPLIB helps keep code maintainable by grouping related modules
together.

• MPLIB commands allow libraries to be created and modules to be
added, listed, replaced, deleted, or extracted.
DS33014G-page 164 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 2. MPLIB – Installation and Getting Started
3

M
P

L
IB
2.1 Introduction
This chapter discussed how to install MPLIB and an overview of the librarian
(MPLIB).

2.2 Highlights
Topics covered in this chapter:

• Installation

• Overview of Librarian

2.3 Installation
There are two versions of MPLIB. MPLIBD.EXE is a DOS extender version
and is only recommended for DOS or Windows 3.x systems. MPLIB.EXE is a
Windows 32-bit console application and is for Windows 95/98/NT.

MPLIBD.EXE and MPLIB.EXE are command-line applications. MPLIBD.EXE
may be used with DOS or a DOS window in Windows 3.x. MPLIB.EXE may
be used with a DOS window in Windows 95/98/NT.

If you are going to use MPLAB, you do not need to install the librarian
separately. When MPLAB is installed, MPLIB is also installed. To find out how
to install MPLAB, please refer to the MPLAB User’s Guide (DS51025). You
may obtain the MPLAB software and user’s guide either from the Microchip
Technical Library CD or from our web site.

If you are not going to use MPLAB, you can obtain the librarian separately
either from the Microchip Technical Library CD or from our web site. MPLINK
is bundled with MPLIB into a zip file. To install:

• Create a directory in which to place the files

• Unzip the MPLINK and MPLIB files using either WinZip or PKZIP
 1999 Microchip Technology Inc. DS33014G-page 165

MPASM User’s Guide with MPLINK and MPLIB
2.4 Overview of Librarian
Figure 2.1 is a diagram of how MPLIB works with other Microchip tools.

Figure 2.1: MPLIB and Other Microchip Tools

MPLIB combines multiple input object modules, generated by MPASM or
MPLAB-C17/C18, into a single output library (lib) file. Library files are used in
conjunction with a linker (See Chapter 2, “MPLINK – Installation and Getting
Started” for more information on MPLINK) to produce executable code.

mult.c

MPLAB-C17/C18

mult.o

MPLIB

math.lib

avg.asm

MPASM

avg.o

add.asm

MPASM

add.o

source

files

object

files

library
DS33014G-page 166 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Chapter 3. Using MPLIB
3

M
P

L
IB
3.1 Introduction
This chapter discussed how to use the librarian (MPLIB).

3.2 Highlights
Topics covered in this chapter:

• Usage Format

• Usage Examples

• Tips

3.3 Usage Format
MPLIB is invoked with the following syntax:

mplib [/q] /{ctdrx} LIBRARY [MEMBER...]

options:

/c create library; creates a new LIBRARY with the listed
MEMBER(s)

/t list members; prints a table showing the names of the members
in the LIBRARY

/d delete member; deletes MEMBER(s) from the LIBRARY; if no
MEMBER is specified the LIBRARY is not altered

/r add/replace member; if MEMBER(s) exist in the LIBRARY, then they are
replaced, otherwise MEMBER is appended to the
end of the LIBRARY

/x extract member; if MEMBER(s) exist in the LIBRARY, then they are
extracted. If no MEMBER is specified, all members
will be extracted

/q quiet mode; no output is displayed
 1999 Microchip Technology Inc. DS33014G-page 167

MPASM User’s Guide with MPLINK and MPLIB
3.4 Usage Examples
Suppose a library named dsp.lib is to be created from three object
modules named fft.o, fir.o, and iir.o. The following command line
would produce the desired results:

mplib /c dsp.lib fft.o fir.o iir.o

To display the names of the object modules contained in a library file names
dsp.lib, the following command line would be appropriate:

mplib /t dsp.lib

3.5 Tips
MPLIB creates library files that may contain only a single external definition
for any symbol. Therefore, if two object modules define the same external
symbol, MPLIB will generate an error if both object modules are added to the
same library file.

To minimize the code and data space which results from linking with a library
file, the library’s member object modules should be as small as possible.
Creating object modules that contain only a single function can significantly
reduce code space.
DS33014G-page 168 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Appendices
A
P

P
E

N
D

IC
E

S

Appendix A. Hex File Formats ..171
Appendix B. Quick Reference ..175
Appendix C. MPASM Errors/Warnings/Messages197
Appendix D. MPLINK Errors/Warnings ..207
Appendix E. MPLIB Errors ..215
 1999 Microchip Technology Inc. DS33014G-page 169

MPASM User’s Guide with MPLINK and MPLIB
DS33014G-page 170 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Appendix A. Hex File Formats
A
P

P
E

N
D

IC
E

S

A.1 Introduction
MPASM is capable of generating several different hex file formats.

A.2 Highlights
Topics covered in this appendix:

• Intel Hex Format (INHX8M) (for standard programmers)

• Intel Split Hex Format (INHX8S) (for ODD/EVEN ROM programmers)

• Intel Hex 32 Format (INHX32) (for 16-bit core programmers)

A.3 Intel Hex Format (.HEX)
This format produces one 8-bit hex file with a low byte, high byte combination.
Since each address can only contain 8 bits in this format, all addresses are
doubled. This file format is useful for transferring PICmicro series code to
PRO MATE II, PICSTART and third party PICmicro programmers.

Each data record begins with a 9 character prefix and ends with a 2-character
checksum. Each record has the following format:

:BBAAAATTHHHH....HHHCC

where:

BB – is a two digit hexadecimal byte count representing the number of data
bytes that will appear on the line.

AAAA – is a four digit hexadecimal address representing the starting address
of the data record.

TT – is a two digit record type record type that will always be ‘00’ except for
the end-of-file record, which will be ‘01’.

HH – is a two digit hexadecimal data byte, presented in low-byte/high-byte
combinations.

CC – is a two digit hexadecimal checksum that is the two’s complement of the
sum of all preceding bytes in the record.
 1999 Microchip Technology Inc. DS33014G-page 171

MPASM User’s Guide with MPLINK and MPLIB
Example A.1:

A.4 8-Bit Split Format (.HXL/.HXH)
The split 8-bit file format produces two output files: .HXL and .HXH. The
format is the same as the normal 8-bit format, except that the low bytes of the
data word are stored in the .HXL file, and the high bytes of the data word are
stored in the .HXH file, and the addresses are divided by two. This is used to
program 16-bit words into pairs of 8-bit EPROMs, one file for Low Byte, one
file for High Byte.

Example A.2:

<file_name>.HEX
:1000000000000000000000000000000000000000F0
:0400100000000000EC
:100032000000280040006800A800E800C80028016D
:100042006801A9018901EA01280208026A02BF02C5
:10005200E002E80228036803BF03E803C8030804B8
:1000620008040804030443050306E807E807FF0839
:06007200FF08FF08190A57
:00000001FF

<file_name>.HXL
:0A0000000000000000000000000000F6
:1000190000284068A8E8C82868A989EA28086ABFAA
:10002900E0E82868BFE8C8080808034303E8E8FFD0
:03003900FFFF19AD
:00000001FF
<file_name>.HXH
:0A0000000000000000000000000000F6
:1000190000000000000000010101010102020202CA
:100029000202030303030304040404050607070883
:0300390008080AAA
:00000001FF
DS33014G-page 172 1999 Microchip Technology Inc.

Hex File Formats

A
P

P
E

N
D

IC
E

S

A.5 32-Bit Hex Format (.HEX)
The extended 32-bit address hex format is similar to the hex 8 format
described above, except that the extended linear address record is output
also to establish the upper 16 bits of the data address. This is mainly used for
16-bit core devices since their addressable program memory exceeds
32 k words.

Each data record begins with a 9 character prefix and ends with a 2 character
checksum. Each record has the following format:

:BBAAAATTHHHH....HHHCC

where:

BB – is a two digit hexadecimal byte count representing the number of data
bytes that will appear on the line.

AAAA – is a four digit hexadecimal address representing the starting address
of the data record.

TT – is a two digit record type:

00 – Data record

01 – End of File record

02 – Segment address record

04 – Linear address record

HH – is a two digit hexadecimal data byte, presented in low byte, high byte
combinations.

CC – is a two digit hexadecimal checksum that is the two’s complement of the
sum of all preceding bytes in the record.
 1999 Microchip Technology Inc. DS33014G-page 173

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 174 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Appendix B. Quick Reference
A
P

P
E

N
D

IC
E

S

B.1 Introduction
This appendix lists abbreviated information on MPASM and PICmicro
instruction sets for use in developing applications using MPASM, MPLINK and
MPLIB.

B.2 Highlights
Topics covered in this appendix:

• MPASM Quick Reference

• Key to PICmicro Instruction Sets

• 12-Bit Core Instruction Set

• 14-Bit Core Instruction Set

• 16-Bit Core Instruction Set

• Key to Enhanced 16-Bit Core Instruction Set

• Enhanced 16-Bit Core Instruction Set

• Hexadecimal to Decimal Conversion

• ASCII Character Set

B.3 MPASM Quick Reference
The following Quick Reference Guide gives all the instructions, directives, and
command line options for the Microchip MPASM Assembler.

Table B.1: MPASM Directive Language Summary

Directive Description Syntax

CONTROL DIRECTIVES

CONSTANT Declare Symbol Constant constant <label> [= <expr>,
...,<label> [= <expr>]]

#DEFINE Define a Text Substitution Label #define <name>
[[(<arg>,...,<arg>)]<value>]

END End Program Block end

EQU Define an Assembly Constant <label> equ <expr>

ERROR Issue an Error Message error "<text_string>"

ERRORLEVEL Set Messge Level errorlevel 0|1|2|<+-><msg>

#INCLUDE Include Additional Source File include <<include_file>>
include "<include_file>"
 1999 Microchip Technology Inc. DS33014G-page 175

MPASM User’s Guide with MPLINK and MPLIB
LIST Listing Options list [<option>[,...,<option>]]

MESSG Create User Defined Message messg "<message_text>"

NOLIST Turn off Listing Output nolist

ORG Set Program Origin <label> org <expr>

PAGE Insert Listing Page Eject page

PROCESSOR Set Processor Type processor <processsor_type>

RADIX Specify Default Radix radix <default_radix>

SET Define an Assembler Variable <label> set <expr>

SPACE Insert Blank Listing Lines space [<expr>]

SUBTITLE Specify Program Subtitle subtitl "<sub_text>"

TITLE Specify Program Title title "<title_text>"

#UNDEFINE Delete a Substitution Label #undefine <label>

VARIABLE Declare Symbol Variable variable <label> [= <expr>,...,
 <label> [= <expr>]]

CONDITIONAL ASSEMBLY

ELSE Begin Alternative Assembly Block to IF else

ENDIF End Conditional Assembly Block endif

ENDW End a While Loop endw

IF Begin Conditionally Assembled Code
Block

if <expr>

IFDEF Execute If Symbol is Defined ifdef <label>

IFNDEF Execute If Symbol is Not Defined ifndef <label>

WHILE Perform Loop While Condition is True while <expr>

DATA

_ _BADRAM Specify invalid RAM locations _ _badram <expr>

CBLOCK Define a Block of Constants cblock [<expr>]

_ _CONFIG Set configuration fuses _ _config <expr> OR
_ _config <addr>, <expr>

DA Store Strings in Program Memory [<label>] da <expr> [, <expr2>, ...,
<exprn>]

DATA Create Numeric and Text Data data <expr>,[,<expr>,...,<expr>]
data
"<text_string>"[,"<text_string>",...]

DB Declare Data of One Byte db <expr>[,<expr>,...,<expr>]

DE Declare EEPROM Data de <expr>[,<expr>,...,<expr>]

DT Define Table dt <expr>[,<expr>,...,<expr>]

DW Declare Data of One Word dw <expr> [,<expr>,...,<expr>]

ENDC End an Automatic Constant Block endc

FILL Specify Memory Fill Value fill <expr>, <count>

_ _ IDLOCS Set ID locations _ _idlocs <expr>

Table B.1: MPASM Directive Language Summary (Continued)

Directive Description Syntax
DS33014G-page 176 1999 Microchip Technology Inc.

Quick Reference

A
P

P
E

N
D

IC
E

S

_ _MAXRAM Specify maximum RAM address _ _maxram <expr>

RES Reserve Memory res <mem_units>

MACROS

ENDM End a Macro Definition endm

EXITM Exit from a Macro exitm

EXPAND Expand Macro Listing expand

LOCAL Declare Local Macro Variable local <label> [,<label>]

MACRO Declare Macro Definition <label> macro [<arg>,...,<arg>]

NOEXPAND Turn off Macro Expansion noexpand

OBJECT FILE DIRECTIVES

BANKISEL Generate RAM bank selecting code for
indirect addressing

bankisel <label>

BANKSEL Generate RAM bank selecting code banksel <label>

CODE Begins executable code section [<name>] code [<address>]

EXTERN Declares an external label extern <label> [,<label>]

GLOBAL Exports a defined label extern <label> [.<label>]

IDATA Begins initialized data section [<name>] idata [<address>]

PAGESEL Generate ROM page selecting code pagesel <label>

UDATA Begins uninitialized data section [<name>] udata [<address>]

UDATA_ACS Begins access uninitialized data section [<name>] udata_acs [<address>]

UDATA_OVR Begins overlayed uninitialized data
section

[<name>] udata_ovr [<address>]

UDATA_SHR Begins shared uninitialized data section [<name>] udata_shr [<address>]

Table B.2: MPASM Command Line Options

Option Default Description

? N/A Displays the MPASM Help Panel

a INHX8M Generate absolute .COD and hex output directly from assembler:
/a<hex-format>
where <hex-format> is one of [INHX8M | INHX8S | INHX32]

c On Enables/Disables case sensitivity

d N/A Define a text string substitution: /d<label>[=<value>]

e On Enable/Disable/Set Path for error file
/e Enable
/e + Enable
/e - Disable
/e <path>error.file Enables/sets path

h N/A Displays the MPASM Help Panel

Table B.1: MPASM Directive Language Summary (Continued)

Directive Description Syntax
 1999 Microchip Technology Inc. DS33014G-page 177

MPASM User’s Guide with MPLINK and MPLIB
l On Enable/Disable/ Set Path for list file
/l Enable
/l + Enable
/l - Disable
/l <path>list.file Enables/sets path

m On Enable/Disable macro expansion

o Off Enable/Disable/Set Path for object file
/o Enable
/o + Enable
/o - Disable
/o <path>object.file Enables/sets path

p None Set the processor type:
/p<processor_type>
where <processor_type> is a PICmicro device.
For example, PIC16C54.

q Off Enable/Disable quiet mode (suppress screen output)

r Hex Defines default radix:
/r<radix>
where <radix> is one of [HEX | DEC | OCT]

t 8 List file tab size: /t<size>

w 0 Set message level: /w<value>
where <level> is one of [0|1|2]
0 – all messages
1 – errors and warnings
2 – errors only

x Off Enable/Disable/ Set Path for cross reference file
/x Enable
/x + Enable
/x - Disable
/x <path>xref.file Enables/sets path

Table B.2: MPASM Command Line Options (Continued)

Option Default Description

Table B.3: Radix Types Supported

Radix Syntax Example

Decimal D’<digits>’ D’100’

Hexadecimal (default) H’<hex_digits>’
0x<hex_digits>

H’9f’
0x9f

Octal O’<octal_digits>’ O’777’

Binary B’<binary_digits>’ B’00111001’

Character (ASCII) ’<character>’
A’<Character>’

’C’
A’C’
DS33014G-page 178 1999 Microchip Technology Inc.

Quick Reference

A
P

P
E

N
D

IC
E

S

Table B.4: MPASM Arithmetic Operators

Operator Description Example

$ Current/Return program counter goto $ + 3

(Left Parenthesis 1 + (d * 4)

) Right Parenthesis (Length + 1) * 256

! Item NOT (logical complement) if ! (a - b)

- Negation (2’s complement) -1 * Length

~ Complement flags = ~flags

high Return high byte movlw high CTR_Table

low Return low byte movlw low CTR_Table

upper Return upper byte movlw upper CTR_Table

* Multiply a = b * c

/ Divide a = b / c

% Modulus entry_len = tot_len % 16

+ Add tot_len = entry_len * 8 + 1

- Subtract entry_len = (tot - 1) / 8

<< Left shift val = flags << 1

>> Right shift val = flags >> 1

>= Greater or equal if entry_idx >= num_entries

> Greater than if entry_idx > num_entries

< Less than if entry_idx < num_entries

<= Less or equal if entry_idx <= num_entries

== Equal to if entry_idx == num_entries

!= Not equal to if entry_idx != num_entries

& Bitwise AND flags = flags & ERROR_BIT

^ Bitwise exclusive OR flags = flags ^ ERROR_BIT

| Bitwise inclusive OR flags = flags | ERROR_BIT

&& Logical AND if (len == 512) && (b == c)

|| Logical OR if (len == 512) || (b == c)

= Set equal to entry_index = 0

+= Add to, set equal entry_index += 1

-= Subtract, set equal entry_index -= 1

*= Multiply, set equal entry_index *= entry_length

/= Divide, set equal entry_total /= entry_length

%= Modulus, set equal entry_index %= 8

<<= Left shift, set equal flags <<= 3

>>= Right shift, set equal flags >>= 3

&= AND, set equal flags &= ERROR_FLAG

|= Inclusive OR, set equal flags |= ERROR_FLAG
 1999 Microchip Technology Inc. DS33014G-page 179

MPASM User’s Guide with MPLINK and MPLIB
B.4 Key to PICmicro Family Instruction Sets

^= Exclusive OR, set equal flags ^= ERROR_FLAG

++ Increment i ++

- - Decrement i --

Field Description

b Bit address within an 8 bit file register

d Destination select; d = 0 Store result in W (f0A).
d = 1 Store result in file register f.

Default is d = 1.

f Register file address (0x00 to 0xFF)

k Literal field, constant data or label

W Working register (accumulator)

x Don’t care location

i Table pointer control; i = 0 Do not change.
i = 1 Increment after instruction execution.

p Peripheral register file address (0x00 to 0x1f)

t Table byte select; t = 0 Perform operation on lower byte.
t = 1 Perform operation on upper byte.

PH:PL Multiplication results registers

Table B.4: MPASM Arithmetic Operators

Operator Description Example
DS33014G-page 180 1999 Microchip Technology Inc.

Quick Reference

A
P

P
E

N
D

IC
E

S

B.5 12-Bit Core Instruction Set
Microchip’s base-line 8-bit microcontroller family uses a 12-bit wide instruction
set. All instructions execute in a single instruction cycle unless otherwise
noted. Any unused opcode is executed as a NOP. The instruction set is
grouped into the following catagories:

Table B.5: 12-Bit Core Literal and Control Operations

Hex Mnemonic Description Function

Ekk ANDLW k AND literal and W k .AND. W → W

9kk CALL k Call subroutine PC + 1 → TOS, k → PC
004 CLRWDT Clear watchdog timer 0 → WDT (and Prescaler if

assigned)

Akk GOTO k Goto address (k is nine bits) k → PC(9 bits)
Dkk IORLW k Incl. OR literal and W k .OR. W → W

Ckk MOVLW k Move Literal to W k → W

002 OPTION Load OPTION Register W → OPTION Register

8kk RETLW k Return with literal in W k → W, TOS → PC

003 SLEEP Go into Standby Mode 0 → WDT, stop oscillator

00f TRIS f Tristate port f W → I/O control reg f

Fkk XORLW k Exclusive OR literal and W k .XOR. W → W

Table B.6: 12-Bit Core Byte Oriented File Register Operations

Hex Mnemonic Description Function

1Cf ADDWF f,d Add W and f W + f → d
14f ANDWF f,d AND W and f W .AND. f → d

06f CLRF f Clear f 0 → f
040 CLRW Clear W 0 → W

24f COMF f,d Complement f .NOT. f → d

0Cf DECF f,d Decrement f f - 1 → d

2Cf DECFSZ f,d Decrement f, skip if zero f - 1 → d, skip if zero

28f INCF f,d Increment f f + 1 → d

3Cf INCFSZ f,d Increment f, skip if zero f + 1 → d,skip if zero
10f IORWF f,d Inclusive OR W and f W .OR. f → d

20f MOVF f,d Move f f → d

02f MOVWF f Move W to f W → f

000 NOP No operation

34f RLF f,d Rotate left f

7......0C

register f
 1999 Microchip Technology Inc. DS33014G-page 181

MPASM User’s Guide with MPLINK and MPLIB
30f RRF f,d Rotate right f

08f SUBWF f,d Subtract W from f f - W → d
38f SWAPF f,d Swap halves f f(0:3) ↔ f(4:7) → d
18f XORWF f,d Exclusive OR W and f W .XOR. f → d

Table B.7: 12-Bit Core Bit Oriented File Register Operations

Hex Mnemonic Description Function

4bf BCF f,b Bit clear f 0 → f(b)

5bf BSF f,b Bit set f 1 → f(b)

6bf BTFSC f,b Bit test, skip if clear skip if f(b) = 0

7bf BTFSS f,b Bit test, skip if set skip if f(b) = 1

Table B.6: 12-Bit Core Byte Oriented File Register Operations (Continued)

Hex Mnemonic Description Function

7......0C

register f
DS33014G-page 182 1999 Microchip Technology Inc.

Quick Reference

A
P

P
E

N
D

IC
E

S

B.6 14-Bit Core Instruction Set
Microchip’s mid-range 8-bit microcontroller family uses a 14-bit wide
instruction set. This instruction set consists of 36 instructions, each a single
14-bit wide word. Most instructions operate on a file register, f, and the
working register, W (accumulator). The result can be directed either to the file
register or the W register or to both in the case of some instructions. A few
instructions operate solely on a file register (BSF for example). The instruction
set is grouped into the following catagories:

Table B.8: 14-Bit Core Literal and Control Operations

Hex Mnemonic Description Function

3Ekk ADDLW k Add literal to W k + W → W
39kk ANDLW k AND literal and W k .AND. W → W

2kkk CALL k Call subroutine PC + 1 → TOS, k → PC

0064 CLRWDT T Clear watchdog timer 0 → WDT (and Prescaler if
assigned)

2kkk GOTO k Goto address (k is nine bits) k → PC(9 bits)

38kk IORLW k Incl. OR literal and W k .OR. W → W

30kk MOVLW k Move Literal to W k → W

0062 OPTION Load OPTION register W → OPTION Register

0009 RETFIE Return from Interrupt TOS → PC, 1 → GIE

34kk RETLW k Return with literal in W k → W, TOS → PC

0008 RETURN Return from subroutine TOS → PC

0063 SLEEP Go into Standby Mode 0 → WDT, stop oscillator

3Ckk SUBLW k Subtract W from literal k - W → W

006f TRIS f Tristate port f W → I/O control reg f

3Akk XORLW k Exclusive OR literal and W k .XOR. W → W

Table B.9: 14-Bit Core Byte Oriented File Register Operations

Hex Mnemonic Description Function

07ff ADDWF f,d Add W and f W + f → d

05ff ANDWF f,d AND W and f W .AND. f → d

018f CLRF f Clear f 0 → f

0100 CLRW Clear W 0 → W

09ff COMF f,d Complement f .NOT. f → d

03ff DECF f,d Decrement f f - 1 → d

0Bff DECFSZ f,d Decrement f, skip if zero f - 1 → d, skip if 0

0Aff INCF f,d Increment f f + 1 → d

0Fff INCFSZ f,d Increment f, skip if zero f + 1 → d, skip if 0

04ff IORWF f,d Inclusive OR W and f W .OR. f → d

08ff MOVF f,d Move f f → d
 1999 Microchip Technology Inc. DS33014G-page 183

MPASM User’s Guide with MPLINK and MPLIB
008f MOVWF f Move W to f W → f

0000 NOP No operation

0Dff RLF f,d Rotate left f

0Cff RRF f,d Rotate right f

02ff SUBWF f,d Subtract W from f f - W → d

0Eff SWAPF f,d Swap halves f f(0:3) ↔ f(4:7) → d
06ff XORWF f,d Exclusive OR W and f W .XOR. f → d

Table B.10: 14-Bit Core Bit Oriented File Register Operations

Hex Mnemonic Description Function

1bff BCF f,b Bit clear f 0 → f(b)

1bff BSF f,b Bit set f 1 → f(b)
1bff BTFSC f,b Bit test, skip if clear skip if f(b) = 0

1bff BTFSS f,b Bit test, skip if set skip if f(b) = 1

Table B.11: 12-Bit/14-Bit Core Special Instruction Mnemonics

Mnemonic Description
Equivalent

Operation(s)
Status

ADDCF f,d Add Carry to File BTFSC
INCF

3,0
f,d

Z

ADDDCF f,d Add Digit Carry to File BTFSC
INCF

3,1
f,d

Z

B k Branch GOTO k -

BC k Branch on Carry BTFSC
GOTO

3,0
k

-

BDC k Branch on Digit Carry BTFSC
GOTO

3,1
k

-

BNC k Branch on No Carry BTFSS
GOTO

3,0
k

-

BNDC k Branch on No Digit Carry BTFSS
GOTO

3,1
k

-

BNZ k Branch on No Zero BTFSS
GOTO

3,2
k

-

BZ k Branch on Zero BTFSC
GOTO

3,2
k

-

Table B.9: 14-Bit Core Byte Oriented File Register Operations (Continued)

Hex Mnemonic Description Function

7......0C

register f

7......0C

register f
DS33014G-page 184 1999 Microchip Technology Inc.

Quick Reference

A
P

P
E

N
D

IC
E

S

CLRC Clear Carry BCF 3,0 -

CLRDC Clear Digit Carry BCF 3,1 -

CLRZ Clear Zero BCF 3,2 -

LCALL k

LGOTO k

MOVFW f Move File to W MOVF f,0 Z

NEGF f,d Negate File COMF
INCF

f,1
f,d

Z

SETC Set Carry BSF 3,0 -

SETDC Set Digit Carry BSF 3,1 -

SETZ Set Zero BSF 3,2 -

SKPC Skip on Carry BTFSS 3,0 -

SKPDC Skip on Digit Carry BTFSS 3,1 -

SKPNC Skip on No Carry BTFSC 3,0 -

SKPNDC Skip on No Digit Carry BTFSC 3,1 -

SKPNZ Skip on Non Zero BTFSC 3,2 -

SKPZ Skip on Zero BTFSS 3,2 -

SUBCF f,d Subtract Carry from File BTFSC
DECF

3,0
f,d

Z

SUBDCF f,d Subtract Digit Carry from File BTFSC
DECF

3,1
f,d

Z

TSTF f Test File MOVF f,1 Z

Table B.11: 12-Bit/14-Bit Core Special Instruction Mnemonics (Continued)

Mnemonic Description
Equivalent

Operation(s)
Status
 1999 Microchip Technology Inc. DS33014G-page 185

MPASM User’s Guide with MPLINK and MPLIB
B.7 16-Bit Core Instruction Set
Microchip’s high-performance 8-bit microcontroller family uses a 16-bit wide
instruction set. This instruction set consists of 55 instructions, each a single
16-bit wide word. Most instructions operate on a file register, f, and the
working register, W (accumulator). The result can be directed either to the file
register or the W register or to both in the case of some instructions. Some
devices in this family also include hardware multiply instructions. A few
instructions operate solely on a file register (BSF for example).

Table B.12: 16-Bit Core Data Movement Instructions

Hex Mnemonic Description Function

6pff MOVFP f,p Move f to p f → p

b8kk MOVLB k Move literal to BSR k → BSR (3:0)

bakx MOVLP k Move literal to RAM page select k → BSR (7:4)

4pff MOVPF p,f Move p to f p → W

01ff MOVWF f Move W to F W → f

a8ff TABLRD t,i,f Read data from table latch into file f,
then update table latch with 16-bit
contents of memory location
addressed by table pointer

TBLATH → f if t=1,
TBLATL → f if t=0;
ProgMem(TBLPTR) → TBLAT;
TBLPTR + 1 → TBLPTR if i=1

acff TABLWT t,i,f Write data from file f to table latch
and then write 16-bit table latch to
program memory location addressed
by table pointer

f → TBLATH if t = 1,
f → TBLATL if t = 0;
TBLAT → ProgMem(TBLPTR);
TBLPTR + 1 → TBLPTR if i=1

a0ff TLRD t,f Read data from table latch into file f
(table latch unchanged)

TBLATH → f if t = 1
TBLATL → f if t = 0

a4ff TLWT t,f Write data from file f into table latch f → TBLATH if t = 1
f → TBLATL if t = 0

Table B.13: 16-Bit Core Arithmetic and Logical Instruction

Hex Mnemonic Description Function

b1kk ADDLW k Add literal to W (W + k) → W

0eff ADDWF f,d Add W to F (W + f) → d

10ff ADDWFC f,d Add W and Carry to f (W + f + C) → d

b5kk ANDLW k AND Literal and W (W .AND. k) → W

0aff ANDWF f,d AND W with f (W .AND. f) → d

28ff CLRF f,d Clear f and Clear d 0x00 → f,0x00 → d

12ff COMF f,d Complement f .NOT. f → d

2eff DAW f,d Dec. adjust W, store in f,d W adjusted → f and d

06ff DECF f,d Decrement f (f - 1) → f and d

14ff INCF f,d Increment f (f + 1) → f and d
b3kk IORLW k Inclusive OR literal with W (W .OR. k) → W
DS33014G-page 186 1999 Microchip Technology Inc.

Quick Reference

A
P

P
E

N
D

IC
E

S

08ff IORWF f,d Inclusive or W with f (W .OR. f) → d
b0kk MOVLW k Move literal to W k → W

bckk MULLW k Multiply literal and W (k x W) → PH:PL
34ff MULWF f Multiply W and f (W x f) → PH:PL
2cff NEGW f,d Negate W, store in f and d (W + 1) → f,(W + 1) → d
1aff RLCF f,d Rotate left through carry

22ff RLNCF f,d Rotate left (no carry)

18ff RRCF f,d Rotate right through carry

20ff RRNCF f,d Rotate right (no carry)

2aff SETF f,d Set f and Set d 0xff → f,0xff → d

b2kk SUBLW k Subtract W from literal (k - W) → W

04ff SUBWF f,d Subtract W from f (f - W) → d

02ff SUBWFB f,d Subtract from f with borrow (f - W - c) → d
1cff SWAPF f,d Swap f f(0:3) → d(4:7),

f(4:7) → d(0:3)

b4kk XORLW k Exclusive OR literal with W (W .XOR. k) → W
0cff XORWF f,d Exclusive OR W with f (W .XOR. f) → d

Table B.14: 16-Bit Core Bit Handling Instructions

Hex Mnemonic Description Function

8bff BCF f,b Bit clear f 0 → f(b)

8bff BSF f,b Bit set f 1 → f(b)

9bff BTFSC f,b Bit test, skip if clear skip if f(b) = 0

9bff BTFSS f,b Bit test, skip if set skip if f(b) = 1

3bff BTG f,b Bit toggle f .NOT. f(b) → f(b)

Table B.13: 16-Bit Core Arithmetic and Logical Instruction (Continued)

Hex Mnemonic Description Function

7......0C

register f

7......0

register f

7......0C

register f

7......0

register f
 1999 Microchip Technology Inc. DS33014G-page 187

MPASM User’s Guide with MPLINK and MPLIB
Table B.15: 16-Bit Core Program Control Instructions

Hex Mnemonic Description Function

ekkk CALL k Subroutine call (within 8k page) PC+1 → TOS,k → PC(12:0),
k(12:8) → PCLATH(4:0),
PC(15:13) → PCLATH(7:5)

31ff CPFSEQ f Compare f/w, skip if f = w f-W, skip if f = W

32ff CPFSGT f Compare f/w, skip if f > w f-W, skip if f > W

30ff CPFSLT f Compare f/w, skip if f< w f-W, skip if f < W

16ff DECFSZ f,d Decrement f, skip if 0 (f-1) → d, skip if 0

26ff DCFSNZ f,d Decrement f, skip if not 0 (f-1) → d, skip if not 0

ckkk GOTO k Unconditional branch (within 8k) k → PC(12:0)
k(12:8) → PCLATH(4:0),
PC(15:13) → PCLATH(7:5)

1eff INCFSZ f,d Increment f, skip if zero (f+1) → d, skip if 0
24ff INFSNZ f,d Increment f, skip if not zero (f+1) → d, skip if not 0
b7kk LCALL k Long Call (within 64k) (PC+1) → TOS; k → PCL,

(PCLATH)→ PCH

0005 RETFIE Return from interrupt, enable
interrupt

(PCLATH) → PCH:k → PCL
0 → GLINTD

b6kk RETLW k Return with literal in W k → W, TOS → PC,
(PCLATH unchanged)

0002 RETURN Return from subroutine TOS → PC
(PCLATH unchanged)

33ff TSTFSZ f Test f, skip if zero skip if f = 0

Table B.16: 16-Bit Core Special Control Instructions

Hex Mnemonic Description Function

0004 CLRWT Clear watchdog timer 0 → WDT,0→ WDT prescaler,
1 → PD, 1 → TO

0003 SLEEP Enter Sleep Mode Stop oscillator,power down, 0 → WDT,
0 → WDT Prescaler
1 → PD, 1 → TO
DS33014G-page 188 1999 Microchip Technology Inc.

Quick Reference

A
P

P
E

N
D

IC
E

S

B.8 Key to Enhanced 16-Bit Core Instruction Set

Field Description

File Addresses

f 8-bit file register address

fs 12-bit source file register address

fd 12-bit destination file register address

dest W register if d = 0; file register if d = 1

r 0, 1, or 2 for FSR number

Literals

kk 8-bit literal value

kb 4-bit literal value

kc bits 8-11 of 12-bit literal value

kd bits 0-7 of 12-bit literal value

Offsets, Addresses

nn 8-bit relative offset (signed, 2’s complement)

nd 11-bit relative offset (signed, 2’s complement)

ml bits 0-7 of 20-bit program memory address

mm bits 8-19 of 20-bit program memory address

xx any 12-bit value

Bits

b bits 9-11; bit address

d bit 9; 0=W destination; 1=f destination

a bit 8; 0=common block; 1=BSR selects bank

s bit 0 (bit 8 for CALL); 0=no update; 1(fast)=update/save W, STATUS, BSR
 1999 Microchip Technology Inc. DS33014G-page 189

MPASM User’s Guide with MPLINK and MPLIB
B.9 Enhanced 16-Bit Core Instruction Set
Microchip’s new high-performance 8-bit microcontroller family uses a 16-bit
wide instruction set. This instruction set consists of 76 instructions, each a
single 16-bit wide word (2 bytes). Most instructions operate on a file register, f,
and the working register, W (accumulator). The result can be directed either to
the file register or the W register or to both in the case of some instructions. A
few instructions operate solely on a file register (BSF for example)

Table B.17: Enhanced 16-Bit Core Literal Operations

Hex Mnemonic Description Function

0Fkk ADDLW kk ADD literal to WREG W+kk → W
0Bkk ANDLW kk AND literal with WREG W .AND. kk → W
0004 CLRWDT Clear Watchdog Timer 0 → WDT, 0 → WDT postscaler,

1 → TO,1 → PD

0007 DAW Decimal Adjust WREG if W<3:0> >9 or DC=1, W<3:0>+6→W<3:0>,
else W<3:0> → W<3:0>;
if W<7:4> >9 or C=1, W<7:4>+6→W<7:4>,
else W<7:4> → W<7:4>;

09kk IORLW kk Inclusive OR literal with
WREG

W .OR. kk → W

EFkc
F0kd

LFSR r,kd:kc Load 12-bit Literal to FSR
 (second word)

kd:kc → FSRr

01kb MOVLB kb Move literal to low nibble in
BSR

kb → BSR

0Ekk MOVLW kk Move literal to WREG kk → W
0Dkk MULLW kk Multiply literal with WREG W * kk → PRODH:PRODL

08kk SUBLW kk Subtract W from literal kk–W → W
0Akk XORLW kk Exclusive OR literal with

WREG
W .XOR. kk → W

Table B.18: Enhanced 16-Bit Core Memory Operations

Hex Mnemonic Description Function

0008 TBLRD * Table Read (no change to TBLPTR) Prog Mem (TBLPTR) → TABLAT

0009 TBLRD *+ Table Read (post-increment TBLPTR) Prog Mem (TBLPTR) → TABLAT
TBLPTR +1 → TBLPTR

000A TBLRD *- Table Read (post-decrement TBLPTR) Prog Mem (TBLPTR) → TABLAT
TBLPTR -1 → TBLPTR

000B TBLRD +* Table Read (pre-increment TBLPTR) TBLPTR +1 → TBLPTR
Prog Mem (TBLPTR) → TABLAT

000C TBLWT * Table Write (no change to TBLPTR) TABLAT → Prog Mem(TBLPTR)

000D TBLWT *+ Table Write (post-increment TBLPTR) TABLAT → Prog Mem(TBLPTR)
TBLPTR +1 → TBLPTR
DS33014G-page 190 1999 Microchip Technology Inc.

Quick Reference

A
P

P
E

N
D

IC
E

S

000E TBLWT *- Table Write (post-decrement TBLPTR) TABLAT → Prog Mem(TBLPTR)
TBLPTR -1 → TBLPTR

000F TBLWT +* Table Write (pre-increment TBLPTR) TBLPTR +1 → TBLPTR
TABLAT → Prog Mem(TBLPTR)

Table B.19: Enhanced 16-Bit Core Control Operations

Hex Mnemonic Description Function

E2nn BC nn Relative Branch if Carry if C=1, PC+2+2*nn→ PC, else PC+2→PC

E6nn BN nn Relative Branch if Negative if N=1, PC+2+2*nn→PC,else PC+2→PC

E3nn BNC nn Relative Branch if Not Carry if C=0, PC+2+2*nn→PC, else PC+2→PC

E7nn BNN nn Relative Branch if Not Nega-
tive

if N=0, PC+2+2*nn→PC, else PC+2→PC

E5nn BNOV nn Relative Branch if Not Over-
flow

if OV=0, PC+2+2*nn→PC, else PC+2→PC

E1nn BNZ nn Relative Branch if Not Zero if Z=0, PC+2+2*nn→PC, else PC+2→PC

E4nn BOV nn Relative Branch if Overflow if OV=1, PC+2+2*nn→PC, else PC+2→PC

E0nd BRA nd Unconditional relative
branch

PC+2+2*nd→ PC

E0nn BZ nn Relative Branch if Zero if Z=1, PC+2+2*nn→PC, else PC+2→PC

ECml
Fmm

CALL mm:ml,s Absolute Subroutine Call
 (second word)

PC+4 → TOS, mm:ml → PC<20:1>,
if s=1, W → WS,
 STATUS → STATUSS, BSR → BSRS

EFml
Fmm

GOTO mm:ml Absolute Branch
 (second word)

mm:ml → PC<20:1>

0000 NOP No Operation No operation

0006 POP Pop Top of return stack TOS-1 → TOS

0005 PUSH Push Top of return stack PC +2→ TOS

D8nd RCALL nd Relative Subroutine Call PC+2 → TOS, PC+2+2*nd→PC

00FF RESET Generate a Reset (same as
MCR reset)

same as MCLR reset

0010 RETFIE s Return from interrupt
 (and enable interrupts)

TOS → PC, 1 → GIE/GIEH or PEIE/GIEL,
if s=1, WS → W, STATUSS → STATUS,
 BSRS → BSR, PCLATU/PCLATH unchngd.

0Ckk RETLW kk Return from subroutine, lit-
eral in W

kk → W,

0012 RETURN s Return from subroutine TOS → PC, if s=1, WS → W,
 STATUSS → STATUS, BSRS → BSR,
 PCLATU/PCLATH are unchanged

0003 SLEEP Enter SLEEP Mode 0 → WDT, 0 → WDT postscaler,
1 → TO, 0 → PD

Table B.18: Enhanced 16-Bit Core Memory Operations (Continued)

Hex Mnemonic Description Function
 1999 Microchip Technology Inc. DS33014G-page 191

MPASM User’s Guide with MPLINK and MPLIB
Table B.20: Enhanced 16-Bit Core Bit Operations

Hex Mnemonic Description Function

9bf BCF f,b,a Bit Clear f 0 → f

8bf BSF f,b,a Bit Set f 1 → f

Bbf BTFSC f,b,a Bit test f, skip if clear if f=0, PC+4→PC, else PC+2→PC

Abf BTFSS f,b,a Bit test f, skip if set if f=1, PC+4→PC, else PC+2→PC

7bf BTG f,b,a Bit Toggle f f → f

Table B.21: Enhanced 16-Bit Core File Register Operations

Hex Mnemonic Description Function

24f ADDWF f,d,a ADD WREG to f W+f → dest

20f ADDWFC f,d,a ADD WREG and Carry bit to f W+f+C → dest

14f ANDWF f,d,a AND WREG with f W .AND. f → dest

6Af CLRF f,a Clear f 0 → f
1Cf COMF f,d,a Complement f f → dest

62f CPFSEQ f,a Compare f with WREG, skip if
f=WREG

f–W, if f=W, PC+4 → PC
 else PC+2 → PC

64f CPFSGT f,a Compare f with WREG, skip if
f > WREG

f–W, if f > W, PC+4 → PC
 else PC+2 → PC

60f CPFSLT f,a Compare f with WREG, skip if
f < WREG

f–W, if f < W, PC+4 → PC
 else PC+2 → PC

04f DECF f,d,a Decrement f f–1 → dest

2Cf DECFSZ f,d,a Decrement f, skip if 0 f–1 → dest, if dest=0, PC+4 → PC
 else PC+2 → PC

4Cf DCFSNZ f,d,a Decrement f, skip if not 0 f–1 → dest, if dest ≠ 0, PC+4 → PC
 else PC+2 → PC

28f INCF f,d,a Increment f f+1 → dest

3Cf INCFSZ f,d,a Increment f, skip if 0 f+1 → dest, if dest=0, PC+4 → PC
 else PC+2 → PC

48f INFSNZ f,d,a Increment f, skip if not 0 f+1 → dest, if dest ≠ 0, PC+4 → PC
 else PC+2 → PC

10f IORWF f,d,a Inclusive OR WREG with f W .OR. f → dest

50f MOVF f,d,a Move f f → dest

Cfs
Ffd

MOVFF fs,fd Move fs to fd
 (second word)

fs → fd

6Ef MOVWF f,a Move WREG to f W → f
02f MULWF f,a Multiply WREG with f W * f → PRODH:PRODL

6Cf NEGF f,a Negate f f +1 → f
34f RLCF f,d,a Rotate left f through Carry

7......0C

register f
DS33014G-page 192 1999 Microchip Technology Inc.

Quick Reference

A
P

P
E

N
D

IC
E

S

44f RLNCF f,d,a Rotate left f (no carry)

30f RRCF f,d,a Rotate right f through Carry

40f RRNCF f,d,a Rotate right f (no carry)

48f SETF f,a Set f 0xFF → f
54f SUBFWB f,d,a Subtract f from WREG with

Borrow
W–f–C → dest

5Cf SUBWF f,d,a Subtract WREG from f f–W → dest

58f SUBWFB f,d,a Subtract WREG from f with
Borrow

f–W–C → dest

38f SWAPF f,d,a Swap nibbbles of f f<3:0> → dest<7:4>, f<7:4> → dest<3:0>

66f TSTFSZ f,a Test f, skip if 0 PC+4 → PC, if f=0, else PC+2 → PC

18f XORWF f,d,a Exclusive OR WREG with f W .XOR. f → dest

Table B.21: Enhanced 16-Bit Core File Register Operations (Continued)

Hex Mnemonic Description Function

7......0

register f

7......0C

register f

7......0

register f
 1999 Microchip Technology Inc. DS33014G-page 193

MPASM User’s Guide with MPLINK and MPLIB
B.10 Hexadecimal to Decimal Conversion

Using This Table: For each Hex digit, find the associated decimal value. Add
the numbers together. For example, Hex A38F converts to 41871 as follows:

Byte Byte

Hex Dec Hex Dec Hex Dec Hex Dec

0 0 0 0 0 0 0 0

1 4096 1 256 1 16 1 1

2 8192 2 512 2 32 2 2

3 12288 3 768 3 48 3 3

4 16384 4 1024 4 64 4 4

5 20480 5 1280 5 80 5 5

6 24576 6 1536 6 96 6 6

7 28672 7 1792 7 112 7 7

8 32768 8 2048 8 128 8 8

9 36864 9 2304 9 144 9 9

A 40960 A 2560 A 160 A 10

B 45056 B 2816 B 176 B 11

C 49152 C 3072 C 192 C 12

D 53248 D 3328 D 208 D 13

E 57344 E 3584 E 224 E 14

F 61440 F 3840 F 240 F 15

Hex 1000’s Digit

40960 768 128

Hex 100’s Digit Hex 10’s Digit Hex 1’s Digit

15

Result

41871
Decimal+ + + =
DS33014G-page 194 1999 Microchip Technology Inc.

Quick Reference

A
P

P
E

N
D

IC
E

S

B.11 ASCII Character Set

L
ea

st
 S

ig
n

if
ic

an
t

C
h

ar
ac

te
r

Most Significant Character

Hex 0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS – = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
 1999 Microchip Technology Inc. DS33014G-page 195

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 196 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Appendix C. MPASM Errors/Warnings/Messages
A
P

P
E

N
D

IC
E

S

C.1 Introduction
The following messages are produced by MPASM. These messages always
appear in the listing file directly above each line in which the error occurred.

The messages are stored in the error file (.ERR) if no MPASM options are
specified. If the /e- option is used (turns error file off), then the messages will
appear on the screen. If the /q (quiet mode) option is used with the /e-, then
the messages will not display on the screen or in an error file. The messages
will still appear in the listing file.

C.2 Highlights
Topics covered in this appendix:

• Errors

• Warnings

• Messages

C.3 Errors
101 ERROR:

User error, invoked with the ERROR directive.

102 Out of memory.

Not enough memory for macros, #defines or internal processing.
Eliminate any TSR’s, close any open applications, and try assembling
the file again. If this error was obtained using the Real Mode DOS
executable, try using either the Windows version (MPASMWIN) or DPMI
version (MPASM_DP)

103 Symbol table full.

No more memory available for the symbol table. Eliminate any TSR’s,
close any open applications, and try assembling the file again. If this
error was obtained using the Real Mode DOS executable, try using
either the Windows version (MPASMWIN) or DPMI version
(MPASM_DP)

 104 Temp file creation error.

Could not create a temporary file. Check the available disk space.

105 Cannot open file.

Could not open a file. If it is a source file, the file may not exist. If it is an
output file, the old version may be write protected.
 1999 Microchip Technology Inc. DS33014G-page 197

MPASM User’s Guide with MPLINK and MPLIB
106 String substitution too complex.

Too much nesting of #defines.

107 Illegal digit.

An illegal digit in a number. Valid digits are 0-1 for binary, 0-7 for octal,
0-9 for decimal, and 0-9, a-f, and A-F for hexadecimal.

108 Illegal character.

An illegal character in a label. Valid characters for labels are alphabetic
(a..f, A..F), numeric (0-9), the underscore (_), and the question mark
(?). Labels may not begin with a numeric.

109 Unmatched (

An open parenthesis did not have a matching close parenthesis. For
example, “DATA (1+2”.

110 Unmatched)

An close parenthesis did not have a matching open parenthesis. For
example, DATA 1+2).

111 Missing symbol.

An EQU or SET statement did not have a symbol to assign the value to.

112 Missing operator.

An arithmetic operator was missing from an expression. For example,
DATA 1 2.

113 Symbol not previously defined.

A symbol was referenced that has not yet been defined. Only
addresses may be used as forward references. Constants and variables
must be declared before they are used.

114 Divide by zero.

Division by zero encountered during an expression evaluation.

115 Duplicate label.

A label was declared as a constant (e.g., with the EQU or CBLOCK
directive) in more than one location.

116 Address label duplicated or different in second pass.

The same label was used in two locations. Alternately, the label was
used only once but evaluated to a different location on the second pass.
This often happens when users try to write page-bit setting macros that
generate different numbers of instructions based on the destination.

117 Address wrapped around 0.

The location counter can only advance to FFFF. After that, it wraps back
to 0.

118 Overwriting previous address contents.

Code was previously generated for this address.
DS33014G-page 198 1999 Microchip Technology Inc.

MPASM Errors/Warnings/Messages

A
P

P
E

N
D

IC
E

S

119 Code too fragmented.

The code is broken into too many pieces. This error is very rare, and will
only occur in source code that references addresses above 32K
(including configuration bits).

120 Call or jump not allowed at this address.

A call or jump cannot be made to this address. For example, CALL
destinations on the PIC16C5x family must be in the lower half of the
page.

121 Illegal label.

Labels are not allowed on certain directive lines. Simply put the label on
its own line, above the directive. Also, HIGH, LOW, PAGE, and BANK
are not allowed as labels.

122 Illegal opcode.

Token is not a valid opcode.

123 Illegal directive.

Directive is not allowed for the selected processor; for example, the
_ _IDLOCS directive on the PIC17C42.

124 Illegal argument.

An illegal directive argument; for example, LIST STUPID.

125 Illegal condition.

A bad conditional assembly. For example, an unmatched ENDIF.

126 Argument out of range.

Opcode or directive argument out of the valid range; for example, TRIS
10.

127 Too many arguments.

Too many arguments specified for a macro call.

128 Missing argument(s).

Not enough arguments for a macro call or an opcode.

129 Expected.

Expected a certain type of argument. The expected list will be provided.

130 Processor type previously defined.

A different family of processor is being selected.

131 Processor type is undefined.

Code is being generated before the processor has been defined. Note
that until the processor is defined, the opcode set is not known.

132 Unknown processor.

The selected processor is not a valid processor.
 1999 Microchip Technology Inc. DS33014G-page 199

MPASM User’s Guide with MPLINK and MPLIB
133 Hex file format INHX32 required.

An address above 32K was specified. For example, specifying the
configuration bits on the PIC17CXX family.

134 Illegal hex file format.

An illegal hex file format was specified in the LIST directive.

135 Macro name missing.

A macro was defined without a name.

136 Duplicate macro name.

A macro name was duplicated.

137 Macros nested too deep.

The maximum macro nesting level was exceeded.

138 Include files nested too deep.

The maximum include file nesting level was exceeded.

139 Maximum of 100 lines inside WHILE-ENDW.

A WHILE-ENDW can contain at most 100 lines.

140 WHILE must terminate within 256 iterations.

A WHILE-ENDW loop must terminate within 256 iterations. This is to
prevent infinite assembly.

141 WHILEs nested too deep.

The maximum WHILE-ENDW nesting level was exceeded.

142 IFs nested too deep.

The maximum IF nesting level was exceeded.

143 Illegal nesting.

Macros, IF’s and WHILE’s must be completely nested; they cannot
overlap. If you have an IF within a WHILE loop, the ENDIF must come
before the ENDW.

144 Unmatched ENDC.

ENDC found without a CBLOCK.

145 Unmatched ENDM.

ENDM found without a MACRO definition.

146 Unmatched EXITM.

EXITM found without a MACRO definition.

147 Directive not allowed when generating an object file.

The ORG directive is not allowed when generating an object file.
Instead, declare a data or code section, specifying the address if
necessary.
DS33014G-page 200 1999 Microchip Technology Inc.

MPASM Errors/Warnings/Messages

A
P

P
E

N
D

IC
E

S

148 Expanded source line exceeded 200 characters.

The maximum length of a source line, after #DEFINE and macro
parameter substitution, is 200 characters. Note that #DEFINE
substitution does not include comments, but macro parameter
substitution does.

149 Directive only allowed when generating an object file section.

Certain directives, such as GLOBAL and EXTERN, only have meaning
when an object file is generated. They cannot be used when generating
absolute code.

150 Labels must be defined in a code or data section when making an
object file.

When generating an object file, all data and code address labels must
be defined inside a data or code section. Symbols defined by the EQU
and SET directives can be defined outside of a section.

151 Operand contains unresolvable labels or is too complex.

When generating an object file, operands must be of the form
[HIGH|LOW]([<relocatable address label>]+[<offset>]).

152 Executable code and data must be defined in an appropriate
section.

When generating an object file, all executable code and data
declarations must be placed within appropriate sections.

153 Page or Bank bits cannot be evaluated for the operand.

The operand of a PAGESEL, BANKSEL or BANKISEL directive must be
of the form <relocatable address label> or <constant>.

154 Each object file section must be contiguous.

Object file sections, except UDATA_OVR sections, cannot be stopped
and restarted within a single source file. To resolve this problem, either
name each section with its own name or move the code and data
declarations such that each section is contiguous. This error will also be
generated if two sections of different types are given the same name.

155 All overlaid sections of the same name must have the same
starting address.

If multiple UDATA_OVR sections with the same name are declared, they
must all have the same starting address.

156 Operand must be an address label.

When generating object files, only address labels in code or data
sections may be declared global. Variables declared by the SET or EQU
directives may not be exported.
 1999 Microchip Technology Inc. DS33014G-page 201

MPASM User’s Guide with MPLINK and MPLIB
157 UNKNOWN ERROR.

An error has occurred which MPASM cannot understand. It is not any of
the errors described in this appendix. Contact your Microchip Field
Application Engineer (FAE) if you cannot debug this error.

C.4 Warnings
201 Symbol not previously defined.

Symbol being #undefined was not previously defined.

202 Argument out of range. Least significant bits used.

Argument did not fit in the allocated space. For example, literals must
be 8 bits.

203 Found opcode in column 1.

An opcode was found in column one, which is reserved for labels.

204 Found pseudo-op in column 1.

A pseudo-op was found in column one, which is reserved for labels.

205 Found directive in column 1.

A directive was found in column one, which is reserved for labels.

206 Found call to macro in column 1.

A macro call was found in column one, which is reserved for labels.

207 Found label after column 1.

A label was found after column one, which is often due to a misspelled
opcode.

208 Label truncated at 32 characters.

Maximum label length is 32 characters.

209 Missing quote.

A text string or character was missing a quote. For example,
DATA ‘a.

210 Extra),

An extra comma was found at the end of the line.

211 Extraneous arguments on the line.

Extra arguments were found on the line. These warnings should be
investigated, since they are often indications of the free-format parser
interpreting something in a manner other than was intended (try
assembling OPTION EQU 0x81 with LIST FREE).

212 Expected

Expected a certain type of argument. A description should be provided.
For the warning, an assumption is made about the argument.
DS33014G-page 202 1999 Microchip Technology Inc.

MPASM Errors/Warnings/Messages

A
P

P
E

N
D

IC
E

S

213 The EXTERN directive should only be used when making a .O file.

The EXTERN directive only has meaning if an object file is being
created. This warning has been superseded by Error 149.

214 Unmatched (

An unmatched parenthesis was found. The warning is used if the
parenthesis is not used for indicating order of evaluation.

215 Processor superseded by command line. Verify processor symbol.

The processor was specified on the command line as well as in the
source file. The command line has precedence.

216 Radix superseded by command line.

The radix was specified on the command line as well as in the source
file. The command line has precedence.

217 Hex file format specified on command line.

The hex file format was specified on the command line as well as in the
source file. The command line has precedence.

218 Expected DEC, OCT, HEX. Will use HEX.

Bad radix specification.

219 Invalid RAM location specified.

If the _ _MAXRAM and _ _BADRAM directives are used, this warning
flags use of any RAM locations declared as invalid by these directives.
Note that the provided header files include _ _MAXRAM and _
_BADRAM for each processor.

220 Address exceeds maximum range for this processor.

A ROM location was specified that exceeds the processor’s memory
size.

221 Invalid message number.

The message number specified for displaying or hiding is not a valid
message number.

222 Error messages cannot be disabled.

Error messages cannot be disabled with the ERRORLEVEL command.

223 Redefining processor

The selected processor is being reselected by the LIST or
PROCESSOR directive.

224 Use of this instruction is not recommended.

Use of the TRIS and OPTION instructions is not recommended for a
PIC16CXX device.

225 Invalid label in operand.

Operand was not a valid address. For example, if the user tried to issue
a CALL to a MACRO name.
 1999 Microchip Technology Inc. DS33014G-page 203

MPASM User’s Guide with MPLINK and MPLIB
226 UNKNOWN WARNING

A warning has occurred which MPASM cannot understand. It is not any
of the warnings described in this appendix. Contact your Microchip
Field Application Engineer (FAE) if you cannot debug this warning.

C.5 Messages
301 MESSAGE:

User message, invoked with the MESSG directive.

302 Register in operand not in bank 0. Ensure that bank bits are
correct.

Register address was specified by a value that included the bank bits.
For example, RAM locations in the PIC16CXX are specified with 7 bits
in the instruction and one or two bank bits.

303 Program word too large. Truncated to core size.

Program words for the PIC16C5X may only be 12-bits; program words
for the PIC16CXX may only be 14-bits.

304 ID Locations value too large. Last four hex digits used.

Only four hex digits are allowed for the ID locations.

305 Using default destination of 1 (file).

If no destination bit is specified, the default is used.

306 Crossing page boundary – ensure page bits are set.

Generated code is crossing a page boundary.

307 Setting page bits.

Page bits are being set with the LCALL or LGOTO pseudo-op.

308 Warning level superseded by command line value.

The warning level was specified on the command line as well as in the
source file. The command line has precedence.

309 Macro expansion superseded by command line.

Macro expansion was specified on the command line as well as in the
source file. The command line has precedence.

310 Superseding current maximum RAM and RAM map.

The _ _MAXRAM directive has been used previously.

312 Page or Bank selection not needed for this device. No code
generated.

If a device contains only one ROM page or RAM bank, no page or bank
selection is required, and any PAGESEL, BANKSEL, or BANKISEL
directives will not generate any code.
DS33014G-page 204 1999 Microchip Technology Inc.

MPASM Errors/Warnings/Messages

A
P

P
E

N
D

IC
E

S

313 CBLOCK constants will start with a value of 0.

If the first CBLOCK in the source file has no starting value specified,
this message will be generated.

314 UNKNOWN MESSAGE

A message has occurred which MPASM cannot understand. It is not
any of the messages described in this appendix. Contact your
Microchip Field Application Engineer (FAE) if you cannot debug this
message.
 1999 Microchip Technology Inc. DS33014G-page 205

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 206 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Appendix D. MPLINK Errors/Warnings
A
P

P
E

N
D

IC
E

S

D.1 Introduction
MPLINK produces the following errors and warnings.

D.2 Highlights
Topics covered in this appendix:

• Parse Errors

• Linker Errors

• Linker Warnings

• Library File Errors

• COFF File Errors

• COFF to COD Converter Errors

• COFF to COD Converter Warnings

D.3 Parse Errors
Invalid attributes for memory in ‘cmdfile:line’. A CODEPAGE, DATABANK,
or SHAREBANK directive does not specify a NAME, START, or END attribute;
or another attribute is specified which is not valid.

Invalid attributes for STACK in ‘cmdfile:line’. A STACK directive does not
specify a SIZE attribute, or another attribute is specified which is not valid.

Invalid attributes for SECTION in ‘cmdfile:line’. A SECTION directive must
have a NAME and either a RAM or ROM attribute.

Could not open ‘cmdfile’. A linker command file could not be opened. Check
that the file exists, is in the current search path, and is readable.

Multiple inclusion of linker command file ‘cmdfile’. A linker command file
can only be included once. Remove multiple INCLUDE directives to the
referenced linker command file.

Illegal <libpath> for LIBPATH in ‘cmdfile:line’. The ‘libpath’ must be a
semicolon delimited list of directories. Enclose directory name which have
embedded spaces in double quotes.

Illegal <lkrpath> for LKRPATH in ‘cmdfile:line’. The ‘lkrpath' must be a
semicolon delimited list of directories. Enclose directory names which have
embedded spaces in double quotes.

Illegal <filename> for FILES in ‘cmdfile:line’. An object or library filename
must end with ‘.o’ or ‘.lib’ respectively.
 1999 Microchip Technology Inc. DS33014G-page 207

MPASM User’s Guide with MPLINK and MPLIB
Illegal <filename> for INCLUDE in ‘cmdfile:line’. A linker command
filename must end with ‘.lkr’.

Unrecognized input in ‘cmdfile:line’. All statements in a linker command file
must begin with a directive keyword or the comment Delimiter ‘//’.

-o switch requires <filename>. A COFF output filename must be specified.
For example: -o main.out

-m switch requires <filename>. A map filename must be specified. For
example: -m main.map

-n switch requires <length>. The number of source lines per listing file page
must be specified. A 'length' of zero will suppress pagination of the listing file.

-L switch requires <pathlist>. A semicolon delimited path must be specified.
Enclose directory names containing embedded spaces with double quotes.
For example: -L ..;c:\mplab\lib;"c:\program files\mplink"

-K switch requires <pathlist>. A semicolon delimited path must be
specified. Enclose directory names containing embedded spaces with double
quotes. For example: -L ..;c:\mplab\lib;"c:\program files\mplink"

unknown switch: ’cmdline token’. An unrecognized command line switch
was supplied. Refer to the Usage documentation for the list of supported
switches.

D.4 Linker Errors
Memory ‘memName’ overlaps memory ‘memName’. All CODEPAGE
blocks must specify unique memory ranges which do not overlap. Similarly
DATABANK and SHAREBANK blocks may not overlap.

Duplicate definition of memory ‘memName’. All CODEPAGE and
DATABANK directives must have unique NAME attributes.

Multiple map files declared: ‘File1’, ‘File2’. The –m <mapfile> switch was
specified more than once.

Multiple output files declared: ‘File1’, ‘File2’. The –o <outfile> switch was
specified more than once.

Multiple inclusion of object file ‘File1’, ‘File2’. An object file has been
included multiple times either on the command line or with a FILES directive
in a linker command file. Remove the multiple references.

Overlapping definitions of SHAREBANK ‘memName’. A SHAREBANK
directive specifies a range of addresses that overlap a previous definition.
Overlaps are not permitted.

Inconsistent length definitions of SHAREBANK ‘memName’. All
SHAREBANK definitions which have the same NAME attribute must be of
equal length.

Multiple STACK definitions. A STACK directive occurs more than once in
the linker command file or included linker command files. Remove the multiple
STACK directives.
DS33014G-page 208 1999 Microchip Technology Inc.

MPLINK Errors/Warnings

A
P

P
E

N
D

IC
E

S

Undefined DATABANK/SHAREBANK ‘memName’ for STACK.

Duplicate definitions of SECTION ‘secName’. Each SECTION directive
must have unique NAME attributes. Remove duplicate definitions.

Undefined CODEPAGE ‘memName’ for SECTION ‘secName’. A SECTION
directive with a ROM attribute refers to a memory block which has not been
defined. Add a CODEPAGE directive to the linker command file for the
undefined memory block.

Undefined DATABANK/SHAREBANK ‘memName’ for SECTION
‘secName’. A SECTION directive with a RAM attribute refers to a memory
block that has not been defined. Add a DATABANK or SHAREBANK directive
to the linker command file for the undefined memory block.

No input object files specified. At least one object module must be
specified either on the command line or in the linker command file using the
FILES directive.

Could not find file ‘File’. An input object or library file was specified which
does not exist, or cannot be found in the linker path.

Processor types do not agree across all input files. Each object module
and library file specifies a processor type or a processor family. All input
modules processor types or families must match.

ROM width of ‘xx’ not supported. An input module specifies a processor
whose ROM width is not 12, 14, or 16 bits wide.

Unknown section type for ‘secName’ in file ‘File’. An input object or library
module is not of the proper file type or it may be corrupted.

Section types for ‘secName’ do not match across input files. A section
with the name ’secName’ may occur in more than one input file. All input files
which have this section must also have the same section type.

Section ‘secName’ is absolute but occurs in more than one input file. An
absolute section with the name ’secName’ may only occur in a single input
file. Relocatable sections with the same name may occur in multiple input
files. Either remove the multiple absolute sections in the source files or use
relocatable sections instead.

Section share types for ‘secName’ do not match across input files. A
section with the name ’secName’ occurs in more than one input file, however,
in some it is marked as a shared section and in some it is not. Change the
section’s share type in the source files and rebuild the object modules.

Section ‘secName’ contains code and can not have a ‘RAM’ memory
attribute specified in the linker command file. Use only the ROM attribute
when defining the section in the linker command file.

Section ‘secName’ contains uninitialized data and can not have a ‘ROM’
memory attribute specified in the linker command file. Use only the RAM
attribute when defining the section in the linker command file.
 1999 Microchip Technology Inc. DS33014G-page 209

MPASM User’s Guide with MPLINK and MPLIB
Section ‘secName’ contains initialized data and can not have a ‘ROM’
memory attribute specified in the linker command file. Use only the RAM
attribute when defining the section in the linker command file.

Section ‘secName’ contains initialized rom data and can not have a
‘RAM’ memory attribute specified in the linker command file. Use only
the ROM attribute when defining the section in the linker command file.

Section ‘secName’ has a memory ‘memName’ which can not fit the
section. Section ‘secName’ length=’0xHHHH’. The memory which was
assigned to the section in the linker command file either does not have space
to fit the section, or the section will overlap another section. Use the –m
<mapfile> switch to generate an error map file. The error map will show the
sections which were allocated prior to the error.

Section ‘secName’ has a memory ‘memName’' which is not defined in
the linker command file. Add a CODEPAGE, DATABANK, or SHAREBANK
directive for the undefined memory to the linker command file.

Section ‘secName’ can not fit the section. Section ‘secName’
length='0xHHHH'. A section which has not been assigned to a memory in the
linker command file can not be allocated. Use the –m <mapfile> switch to
generate an error map file. The error map will show the sections which were
allocated prior to the error. More memory must be made available by adding a
CODEPAGE, SHAREBANK, or DATABANK directive, or by removing the
PROTECTED attribute, or the number of input sections must be reduced.

Section ‘secName’ has a memory ‘memName’ which can not fit the
absolute section. Section 'secName' start=0xHHHH, length=0xHHHH.
The memory which was assigned to the section in the linker command file
either does not have space to fit the section, or the section will overlap
another section. Use the –m <mapfile> switch to generate an error map file.
The error map will show the sections which were allocated prior to the error.

Section ‘secName’ can not fit the absolute section. Section ‘secName’
start=0xHHHH, length=0xHHHH. A section which has not been assigned to
a memory in the linker command file can not be allocated. Use the –m
<mapfile> switch to generate an error map file. The error map will show the
sections which were allocated prior to the error. More memory must be made
available by adding a CODEPAGE, SHAREBANK, or DATABANK directive, or
by removing the PROTECTED attribute, or the number of input sections must
be reduced.

Symbol ‘symName’ has multiple definitions. A symbol may only be defined
in a single input module.

Could not resolve symbol ‘symName’ in file ‘File’. The symbol ‘symName’
is an external reference. No input module defines this symbol. If the symbol is
defined in a library module, ensure that the library module is included on the
command line or in the linker command file using the FILES directive.

Could not open map file ‘File’ for writing. Verify that if ‘File’ exists, it is not a
read-only file.
DS33014G-page 210 1999 Microchip Technology Inc.

MPLINK Errors/Warnings

A
P

P
E

N
D

IC
E

S

Symbol ‘symName’ out of range of relative branch instruction. A relative
branch instruction had ‘symName’ as its target, but a 2s compliment encoding
of the offset to ‘symName’ wouldn’t fit in the limited number of instruction bits
used for the target of a branch instruction.

Symbol ‘symName’ is not word-aligned. It cannot be used as the target of
a {branch | call or goto} instruction. The target of a branch, call, or goto
instruction was at an odd address, but the instruction encoding cannot
reference addresses that are not word-aligned.

{PCL | TOSH | TOSU | TOSL} cannot be used as the destination of a
MOVFF instruction. The MOVFF instruction has unpredictable results when
its destination is the PCL, TOSH, TOSU, or TOSL registers. MPLINK will not
allow the destination of a MOVFF instruction to be replaced with any of these
addresses.

Absolute code section ‘secName’ must start at a word-aligned address.
Program code sections will only be allocated at word-aligned addresses.
MPLINK will give this error message if an absolute code section address is
specified that is not word-aligned.

D.5 Linker Warnings
Fill pattern for memory ‘memName’ doesn’t divide evenly into unused
section locations. Last value was truncated. If a fill pattern is specified for a
ROM section, but the free space in that section isn’t evenly divisible by the fill
pattern size, this warning will be issued to warn of incomplete patterns.

D.6 Library File Errors
Symbol ‘name’ has multiple external definitions. A symbol may only be
defined once in a library file.

Could not open library file ‘filename’ for reading. Verify that ‘filename’
exists and can be read.

Could not read archive magic string in library file ‘filename’. The file is
not a valid library file or it may be corrupted.

File ‘filename’ is not a valid library file. Library files must end with ‘.lib’.

Library file ‘filename’ has a missing member object file. The file not a
valid object file or it may be corrupted.

Could not build member ‘memberName’ in library file ‘filename’. The file
is not a valid library file or it is corrupted.

Could not open library file ‘filename’ for writing. Verify that if ‘filename’
exists, it is not read-only.

Could not write archive magic string in library file ‘filename’. The file may
be corrupted.

Could not write member header for ‘memberName’ in library file
‘filename’. The file may be corrupted.
 1999 Microchip Technology Inc. DS33014G-page 211

MPASM User’s Guide with MPLINK and MPLIB
‘memberName’ is not a member of ‘filename’. ‘memberName’ can not be
extracted or deleted from a library unless it is a member of the library.

D.7 COFF File Errors
All COFF file errors indicate an internal error in the file’s contents. Please
contact Microchip support if any of the following errors are generated:

• Unable to find section name in string table.

• Unable to find symbol name in string table.

• Unable to find aux_file name in string table.

• Could not find section name ‘secName’ in string table.

• Could not find symbol name ‘symName’ in string table.

• Coff file ‘filename’ symbol[‘xx’] has an invalid n_scnum.

• Coff file ‘filename’ symbol[‘xx’] has an invalid n_offset.

• Coff file ‘filename’ section[‘xx’] has an invalid s_offset.

• Coff file ‘filename’ has relocation entries but an empty symbol table.

• Coff file ‘filename’, section ‘secName’ reloc[‘xx’] has an invalid
r_symndx.

• Coff file ‘filename’, symbol['xx'] has an invalid x_tagndx or x_endndx.

• Coff file ‘filename’, section ‘secName’ line[‘xx’] has an invalid l_srcndx.

• Coff file ‘filename’, section ‘secName’ line[‘xx’] has an invalid l_fcnndx.

• Coff file ‘filename’, cScnHdr.size() != cScnNum.size().

• Could not open Coff file ‘filename’ for reading.

• Coff file ‘filename’ could not read file header.

• Coff file ‘filename’ could not read optional file header.

• Coff file ‘filename’ missing optional file header.

• Coff file ‘filename’ could not read string table length.

• Coff file ‘filename’ could not read string table.

• Coff file ‘filename’ could not read symbol table.

• Coff file ‘filename’ could not read section header.

• Coff file ‘filename’ could not read raw data.

• Coff file ‘filename’ could not read line numbers.

• Coff file ‘filename’ could not read relocation info.

• Could not open Coff file ‘filename’ for writing.

• Coff file ‘filename’ could not write file header.

• Coff file ‘filename’ could not write optional file header.

• Coff file ‘filename’ could not write section header.
DS33014G-page 212 1999 Microchip Technology Inc.

MPLINK Errors/Warnings

A
P

P
E

N
D

IC
E

S

• Coff file ‘filename’ could not write raw data.

• Coff file ‘filename’ could not write reloc.

• Coff file ‘filename’ could not write lineinfo.

• Coff file ‘filename’ could not write symbol.

• Coff file ‘filename’ could not write string table length.

• Coff file ‘filename’ could not write string.

D.8 COFF To COD Converter Errors
Coff file ‘filename’ must contain at least one ‘code’ or ‘romdata’ section.
In order to convert a COFF file to a COD file, the COFF file must have either a
code or a romdata section.

Could not open list file ‘filename’ for writing. Verify that if ‘filename’ exists
and that it is not a read-only file.

D.9 COFF To COD Converter Warnings
Could not open source file ‘filename’. This file will not be present in the
list file. The referenced source file could not be opened. This can happen if
an input object/library module was built on a machine with a different directory
structure. If source level debugging for the file is desired, rebuild the object or
library on the current machine.
 1999 Microchip Technology Inc. DS33014G-page 213

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 214 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Appendix E. MPLIB Errors
A
P

P
E

N
D

IC
E

S

E.1 Introduction
MPLIB detects the following sources of error and reports them.

E.2 Highlights
Topics covered in this appendix:

• Parse Errors

• Library File Errors

• COFF File Errors

E.3 Parse Errors
invalid switch. An unsupported switch was specified. Refer to Usage for a
list of supported command line options.

library filename is required. All commands require a library filename. All
library filenames must end with '.lib'.

invalid object filename. All object filenames must end with '.o'.

E.4 Library File Errors
Please refer to the documentation on MPLINK for error messages associated
with library files.

E.5 COFF File Errors
Please refer to the documentation on MPLINK for error messages associated
with COFF files.
 1999 Microchip Technology Inc. DS33014G-page 215

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 216 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with

MPLINK and MPLIB

Glossary
Introduction
To provide a common frame of reference, this glossary defines the terms that
are used in this document.

Highlights
This glossary contains definitions for the terms used in the MPASM, MPLINK
and MPLIB sections. Most terms are used in all three, though some may be
section-specific.

Terms
Absolute Section

A section with a fixed absolute address which can not be changed by the
Linker.

Alpha Character

Alpha characters are those characters, regardless of case, that are normally
contained in the alphabet: (a, b, …, z, A, B, …, Z).

Alphanumeric

Alphanumeric characters include alpha characters and numbers: (0,1, …, 9).

Application

A set of software and hardware developed by the user, usually designed to be
a product controlled by a PICmicro microcontroller.

Assemble

The act of executing the MPASM macro assembler to translate source code to
machine code.

Assembler Source Code

A text file that is processed by an assembler to produce a one-to-one
correspondence between assembler instructions and PICmicro machine
code.

Assigned Section

A section which has been assigned to a target memory block in the linker
command file. The Linker allocates an assigned section into its assigned
target memory block.

Build

A function that recompiles all the source files for an application.
 1999 Microchip Technology Inc. DS33014G-page 217

MPASM User’s Guide with MPLINK and MPLIB
COFF

Common Object File Format - a file format definition for object/executable
files. Used as a relocatable object file from MPASM or MPLAB-C17/18.

Command Line Interface

Command Line Interface refers to executing a program with options.
Executing MPASM with any command line options or just the file name will
invoke the assembler. In the absence of any command line options, a
prompted input interface (shell) will be executed.

Control Directives

Control directives permit sections of conditionally assembled code.

Data Directives

Data Directives are those that control the allocation of memory and provide a
way to refer to data items symbolically, that is, by meaningful names.

Data RAM

General purpose file registers from RAM on the PICmicro device being
emulated. The File Register window displays data RAM.

Directives

Directives provide control of the assembler’s operation by telling MPASM how
to treat mnemonics, define data, and format the listing file. Directives make
coding easier and provide custom output according to specific needs.

Expressions

Expressions are used in the operand field of the source line and may contain
constants, symbols, or any combination of constants and symbols separated
by arithmetic operators. Each constant or symbol may be preceded by a plus
or minus to indicate a positive or negative expression.

External Linkage

A function or variable has external linkage if it can be accessed from outside
the module in which it is defined.

External Symbol

A symbol for an identifier which has external linkage.

External Symbol Definition

An external symbol for a function or variable defined in the current module.

External Symbol Reference

An external symbol which references a function or variable defined outside
the current module.

Note: Expressions are evaluated in 32 bit integer math (floating point is
not currently supported).
DS33014G-page 218 1999 Microchip Technology Inc.

Glossary
External Symbol Resolution

A process performed by the linker in which external symbol definitions from all
input modules are collected in an attempt to update all external symbol
references. Any external symbol references which do not get updated cause a
linker error to be reported.

Hex Code

Executable instructions assembled or compiled from source code into
standard hexadecimal format code. Hex code can be directly converted to
object code. Hex code is contained in a hex file.

Hex File

An ASCII file containing hexadecimal addresses and values (hex code)
suitable for programming a device. This format is readable by a device
programmer.

Identifier

A function or variable name.

Initialized Data

Data which is defined with an initial value. In C, int myVar=5; defines a
variable which will reside in an initialized data section.

Internal Linkage

A function or variable has internal linkage if it can not be accessed from
outside the module in which it is defined.

Library

A library is a collection of relocatable object modules. It is created by
assembling multiple source files to object files, and then using the librarian to
combine the object files into one library file. A library can be linked with object
modules and other libraries to create executable code. Libraries are created
and manipulated with Microchip’s librarian, MPLIB.

Link

Linking is the process of combining object files and libraries to create
executable code. Linking is performed by Microchip’s linker, MPLINK.

Listing Directives

Listing Directives are those directives that control the MPASM listing file
format. They allow the specification of titles, pagination and other listing
control.

Listing File

A listing file is an ASCII text file that shows the machine code generated for
each assembly instruction, MPASM directive, or macro encountered in a
source file.
 1999 Microchip Technology Inc. DS33014G-page 219

MPASM User’s Guide with MPLINK and MPLIB
Local Label

A local label is one that is defined with the LOCAL directive. These labels are
particular to a given instance of the macro’s instantiation. In other words, the
symbols and labels that are declared as local are purged from the symbol
table when the ENDM macro is encountered.

Macro

A macro is a collection of assembler instructions that are included in the
assembly code when the macro name is encountered in the source code.
Macros must be defined before they are used; forward references to macros
are not allowed.

All statements following the MACRO directive are part of the macro definition.
Labels used within the macro must be local to the macro so the macro can be
called repetitively.

Macro Directives

These directives control the execution and data allocation within macro body
definitions.

Make Project

A command that rebuilds an application, re-compiling only those source files
that have changed since the last complete compilation.

Mnemonics

These are instructions that are translated directly into machine code. These
are used to perform arithmetic and logical operations on data residing in
program or data memory of a microcontroller. They also have the ability to
move data in and out of registers and memory as well as change the flow of
program execution. Also referred to as Opcodes.

MPASM

Microchip Technology’s Relocatable macro assembler.

MPLAB

The name of the main executable program that supports the IDE with an
Editor, Project Manager, and Emulator/Simulator Debugger. The MPLAB
Software resides on the PC host. The executable file name is MPLAB.EXE.
MPLAB.EXE calls many other files.

MPLAB-C17/C18

Microchip Technology’s C compiler for PIC17CXX and PIC18CXX products.

MPLIB

Microchip Technology’s Librarian for library files used with MPLINK.

MPLINK

Microchip Technology’s Linker.

Nesting Depth

Macros can be nested to sixteen levels deep.
DS33014G-page 220 1999 Microchip Technology Inc.

Glossary
Node

MPLAB project component.

Object Code

The machine code that is produced from the source code after it is processed
by an assembler or compiler. This code will be the memory-resident code that
will run on the PICmicro in the user’s application. Relocatable code is code
produced by MPASM or MPLAB-C17/C18 that can be run through MPLINK.
Object code is contained in an object file.

Object File

A module which may contain relocatable code or data and references to
external code or data. Typically, multiple object modules are linked to form a
single executable output.Special directives are required in the source code
when generating an object file. The object file contains object code.

Object File Directives

These directives are used only when creating an object file.

Operators

Operators are arithmetic symbols, like the plus sign ‘+’ and the minus sign ‘-’,
that are used when forming well-defined expressions. Each operator has an
assigned precedence.

PC

Any IBM or compatible Personal Computer. MPLAB needs a 486X or better
machine.

PC Host

The computer running Windows 3.1x or Windows 95/98.

PICmicro

PICmicro refers to the PIC12CXX, PIC14000, PIC16C5X, PIC16CXX,
PIC17CXX and PIC18CXX Microchip microcontroller families.

Precedence

Precedence is the concept that some elements of an expression get
evaluated before others. Operators of the same precedence are evaluated
from left to right.

Program Memory

Memory in the emulator or simulator containing the downloaded target
application firmware.

Project

A set of source files and instructions to build the object code for an
application.
 1999 Microchip Technology Inc. DS33014G-page 221

MPASM User’s Guide with MPLINK and MPLIB
Radix

Radix is the base-numbering system that the assembler uses when
evaluating expressions. The default radix is hexadecimal (base 16). You can
change the default radix and override the default radix with certain radix
override operators.

RAM

Random Access Memory (Data Memory).

Raw Data

The binary representation of code or data associated with a section.

Recursion

This is the concept that a macro, having been defined, can call itself. Great
care should be taken when writing recursive macros; it is easy to get caught in
an infinite loop where there will be no exit from the recursion.

Relocatable Section

A section whose address in not fixed. The linker assigns addresses to
relocatable sections through a process called relocation.

Relocation

A process performed by the linker in which absolute addresses are assigned
to relocatable sections and all identifier symbol definitions within the
relocatable sections are updated to their new addresses.

ROM

Read-only Memory (Program Memory).

Script

Linker script files are the command files of MPLINK.

Section

An aggregate of code or data which has a name, size, and address.

Shared Section

A section which resides in a shared (non-banked) region of data RAM.

Shell

The MPASM shell is a prompted input interface to the macro assembler.
There are two MPASM shells, one for the DOS version and one for the
Windows version.

Software Stack

MPLAB-C17/C18 software stack.

Source Code

Source code consists of PICmicro instructions and MPASM directives and
macros that will be translated into machine code. This code is suitable for use
by a PICmicro or Microchip development system product like MPLAB™.
DS33014G-page 222 1999 Microchip Technology Inc.

Glossary
Source File

The ASCII text file of PICmicro instructions and MPASM directives and
macros (source code) that will be translated into machine code. It is an ASCII
file that can be created using any ASCII text editor.

Stack

An area in data memory where function arguments, return values, local
variables, and return addresses are stored.

Symbol

A symbol is a general purpose mechanism for describing the various pieces
which comprise a program. These pieces include function names, variable
names, section names, file names, struct/enum/union tag names, etc.

Unassigned Section

A section which has not been assigned to a specific target memory block in
the linker command file. The linker must find a target memory block in which
to allocate an unassigned section.

Uninitialized Data

Data which is defined without an initial value. In C, int myVar; defines a
variable which will reside in an uninitialized data section.
 1999 Microchip Technology Inc. DS33014G-page 223

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 224 1999 Microchip Technology Inc.

MPASM USER’S GUIDE with
MPLINK and MPLIB

Index
Symbols
#DEFINE 46, 56, 70, 197, 201
#UNDEFINE ... 57, 70
_ _ BADRAM .. 39
_ _ CONFIG ... 42

A
ACCESSBANK 122, 125, 126
Accessing Labels From Other Modules 77
Application Notes ... 5
Arithmatic Operators 91, 179
ASCII Character Set 195

B
BADRAM .. 60, 203
BANKISEL .. 39, 201
BANKSEL ... 40, 77, 201
Build ... 217

C
CALL .. 199
Case Sensitivity .. 22
CBLOCK 19, 41, 49, 198
CD-ROM ... 5
CODE ... 41
CODEPAGE 121, 122, 125
Command Line Interface 21, 177, 218
Comments .. 18
Compatibility ... 12
Configuration Bits ... 76
CONSTANT .. 19, 43
Conventions ... 3
Conversion, Hexadecimal to Decimal 194
Cross Reference File 23
Customer Support .. 8

D
DA .. 44
DATA .. 44, 89
DATABANK 122, 123, 125, 126
DB .. 45
DE .. 45
Define ... 22
Directive Summary ... 35
Directives .. 35, 218
Document Layout ... 1

DOS Shell Interface .. 24
DT ... 47
DW .. 47, 89

E
ELSE .. 48, 56
END .. 48
ENDC .. 41, 49, 200
ENDIF 49, 56, 199, 200
ENDM ... 49, 84, 87, 200
ENDW ... 50, 71
EQU .. 19, 50, 65, 198
ERROR ... 51
Error File 16, 20, 22, 51, 197
ERRORLEVEL .. 51, 203
Errors 197, 207, 208, 211, 212, 213, 215
Escape Sequences ... 90
EXITM ... 52, 84, 85, 200
EXPAND ... 52
Expressions .. 218
EXTERN ... 53

F
File

Cross Reference 23
Error ... 22, 51, 197
Listing 22, 35, 51, 52, 58, 62, 66, 67, 219
Object ... 22, 221

File Extensions ... 16
FILL .. 53

G
GLOBAL ... 54
Glossary .. 217

H
Header Files ... 73
Hex File Format 20, 22, 25, 58, 171
HIGH ... 199
High/Low ... 93

I
ID Locations .. 76
IDATA ... 54
IDLOCS .. 55, 199
IF .. 48, 56, 200
IFDEF ... 46, 56
 1999 Microchip Technology Inc. DS33014G-page 225

MPASM User’s Guide with MPLINK and MPLIB
IFNDEF ...57
INCLUDE ..58
Increment/Decrement93
Initialization ...95
Instruction Operands75
Instruction Sets180, 189

12-Bit Core ...181
14-Bit Core ...183
16-Bit Core ...186
Special Instructions184

Internet Address ...5

L
Labels ...17
Library ...219
Link ...219
Linker Options ...109
Linker Processing ...127
Linker Scripts ..119
LIST ..42, 55, 58, 203
Listing File 16, 19, 22, 35, 51, 52, 58, 62, 66, 67,

219
LOCAL ..59, 86
Local Label ...220
Logical Section Definitions125
LOW ..199

M
MACRO ..22, 49, 60
Macro Language ...83
MAXRAM39, 60, 203, 204
Memory Region Definitions121
Message Level23, 51, 59
Messages ...204
MESSG ...61
Microchip Internet Web Site5
Microcontroller Mode221
Migration Path ...12
Mnemonics ...17, 220
MPASM ...11, 21

Directive Summary35
Directives ..35
Errors ..197
Input/Output Files16
Installation ..13
Messages ...204
MPLAB Projects29
Overview ..14
Quick Reference175
Warnings ..202

MPASMWIN ..21, 197
MPLAB ..220
MPLAB User’s Guide ..4
MPLAB-ICE ...12
MPLIB ...163, 219

COFF File Errors215
Installation ..165
Library File Errors215
Overview ...166
Parse Errors ...215
Usage ...167

MPLINK ...99, 219
COFF File Errors212
COFF To COD Converter Errors213
COFF To COD Converter Warnings213
Command Line Information119
Input/Output Files105
Installation ..103
Library File Errors211
Linker Errors ...208
Linker Scripts ..119
Linker Warnings211
MPLAB Projects111
Overview ...104
Parce Errors ...207
Sample Application 1131
Sample Application 2137
Sample Application 3145
Sample Application 4151

N
NOEXPAND ..52, 62
NOLIST ...62

O
Object File ...22, 25, 221
Objects, Relocatable73
Off-Chip Memory ...221
Operands ..17
Operators ..221
ORG ..62

P
PAGE ..63
PAGESEL ...63, 201
Paging and Banking Issues77
PICmicro221, 222, 223
PICSTART ..12
Precedence ...221
PRO MATE ...12
DS33014G-page 226 1999 Microchip Technology Inc.

Index
PROCESSOR 42, 55, 64, 203
Processor Type 22, 203
Program Memory .. 74
Project .. 29, 111, 221

R
RADIX .. 64
Radix 12, 22, 59, 91, 203, 222
RAM Allocation ... 75
README Files ... 4
Relocatable Objects 73
RES .. 65

S
SET 19, 43, 65, 70, 198
SHAREBANK 122, 123, 125, 126
Shell ... 21, 222
Source Code .. 222
Source File ... 16
SPACE ... 66
STACK Definition ... 126
SUBTITLE .. 66

T
Text Strings .. 89
TITLE .. 66

U
UDATA ... 67
UDATA_ACS .. 68, 75
UDATA_OVR ... 68
UDATA_SHR .. 69
UPPER ... 75

V
VARIABLE .. 19, 43, 70

W
Warnings 202, 211, 213
WHILE .. 50, 71, 86, 200
WHILE-ENDW .. 200
Windows Shell Interface 27
WWW Address ... 5
 1999 Microchip Technology Inc. DS33014G-page 227

MPASM User’s Guide with MPLINK and MPLIB
NOTES:
DS33014G-page 228 1999 Microchip Technology Inc.

Index
NOTES:
 1999 Microchip Technology Inc. DS33014G-page 229

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

 1999 Microchip Technology Inc.

All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99 Printed on recycled paper.

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-786-7200 Fax: 480-786-7277
Technical Support: 480-786-7627
Web Address: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575
Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
Microchip Technology Inc.
4570 Westgrove Drive, Suite 160
Addison, TX 75248
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Microchip Technology Inc.
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)
Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
Hong Kong
Microchip Asia Pacific
Unit 2101, Tower 2
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431
Beijing
Microchip Technology, Beijing
Unit 915, 6 Chaoyangmen Bei Dajie
Dong Erhuan Road, Dongcheng District
New China Hong Kong Manhattan Building
Beijing 100027 PRC
Tel: 86-10-85282100 Fax: 86-10-85282104
India
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062
Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222-0033 Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Shanghai
Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hong Qiao District
Shanghai, PRC 200335
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

ASIA/PACIFIC (continued)
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5858 Fax: 44-118 921-5835
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 München, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

11/15/99

WORLDWIDE SALES AND SERVICE

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Adjust Spine to fit

DS33014

© 1999 Microchip Technology Inc., Printed in the U.S.A. 3/99

Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199

Tel: 602.786.7200 Fax: 602.899.9210

M
P

A
S
M

 U
S
E
R

'S
 G

U
ID

E
 w

ith
 M

P
LIN

K
 a

n
d
 M

P
LIB

MPASM

USER'S GUIDE
with MPLINK and MPLIB

	General Information
	Introduction
	Highlights
	About This Guide
	Conventions Used in this Guide
	Updates
	Warranty Registration
	Recommended Reading
	The Microchip Internet Web Site
	Development Systems Customer Notification Service
	Customer Support

	Chapter 1. MPASM Preview
	1.1 Introduction
	1.2 Highlights
	1.3 What MPASM Is
	1.4 What MPASM Does
	1.5 Migration Path
	1.6 Compatibility Issues

	Chapter 2. MPASM – Installation and Getting Started
	2.1 Introduction
	2.2 Highlights
	2.3 Installation
	2.4 Overview of Assembler
	2.5 Assembler Input/Output Files

	Chapter 3. Using MPASM with DOS
	3.1 Introduction
	3.2 Highlights
	3.3 Command Line Interface
	3.4 DOS Shell Interface

	Chapter 4. Using MPASM with Windows and MPLAB
	4.1 Introduction
	4.2 Highlights
	4.3 Windows Shell Interface
	4.4 MPLAB Projects and MPASM
	4.5 Setting Up MPLAB to use MPASM
	4.6 Generating Output Files
	4.7 MPLAB/MPASM Troubleshooting

	Chapter 5. Directive Language
	5.1 Introduction
	5.2 Highlights
	5.3 Directive Summary
	5.4 _ _BADRAM – Identify Unimplemented RAM
	5.5 BANKISEL – Generate Indirect Bank Selecting
	5.6 BANKSEL – Generate Bank Selecting Code
	5.7 CBLOCK – Define a Block of Constants
	5.8 CODE – Begin an Object File Code Section
	5.9 _ _CONFIG – Set Processor Configuration Bits
	5.10 CONSTANT – Declare Symbol Constant
	5.11 DA – Store Strings in Program Memory
	5.12 DATA – Create Numeric and Text Data
	5.13 DB – Declare Data of One Byte
	5.14 DE – Declare EEPROM Data Byte
	5.15 #DEFINE – Define a Text Substitution Label
	5.16 DT – Define Table
	5.17 DW – Declare Data of One Word
	5.18 ELSE – Begin Alternative Assembly Block to IF
	5.19 END – End Program Block
	5.20 ENDC – End an Automatic Constant Block
	5.21 ENDIF – End Conditional Assembly Block
	5.22 ENDM – End a Macro Definition
	5.23 ENDW – End a While Loop
	5.24 EQU – Define an Assembler Constant
	5.25 ERROR – Issue an Error Message
	5.26 ERRORLEVEL – Set Message Level
	5.27 EXITM – Exit from a Macro
	5.28 EXPAND – Expand Macro Listing
	5.29 EXTERN – Declare an Externally Defined Label
	5.30 FILL – Specify Memory Fill Value
	5.31 GLOBAL – Export a Label
	5.32 IDATA – Begin an Object File Initialized Data
	5.33 _ _IDLOCS – Set Processor ID Locations
	5.34 IF – Begin Conditionally Assembled Code Block
	5.35 IFDEF – Execute If Symbol has Been Defined
	5.36 IFNDEF – Execute If Symbol has not Been
	5.37 INCLUDE – Include Additional Source File
	5.38 LIST – Listing Options
	5.39 LOCAL – Declare Local Macro Variable
	5.40 MACRO – Declare Macro Definition
	5.41 _ _MAXRAM – Define Maximum RAM Location
	5.42 MESSG – Create User Defined Message
	5.43 NOEXPAND – Turn off Macro Expansion
	5.44 NOLIST – Turn off Listing Output
	5.45 ORG – Set Program Origin
	5.46 PAGE – Insert Listing Page Eject
	5.47 PAGESEL – Generate Page Selecting Code
	5.48 PROCESSOR – Set Processor Type
	5.49 RADIX – Specify Default Radix
	5.50 RES – Reserve Memory
	5.51 SET – Define an Assembler Variable
	5.52 SPACE – Insert Blank Listing Lines
	5.53 SUBTITLE – Specify Program Subtitle
	5.54 TITLE – Specify Program Title
	5.55 UDATA – Begin an Object File Uninitialized Data
	5.56 UDATA_ACS – Begin an Object File Access
	5.57 UDATA_OVR – Begin an Object File Overlayed
	5.58 UDATA_SHR – Begin an Object File Shared
	5.59 #UNDEFINE – Delete a Substitution Label
	5.60 VARIABLE – Declare Symbol Variable
	5.61 WHILE – Perform Loop While Condition is True

	Chapter 6. Using MPASM to Create Relocatable Objects
	6.1 Introduction
	6.2 Highlights
	6.3 Header Files
	6.4 Program Memory
	6.5 Instruction Operands
	6.6 RAM Allocation
	6.7 Configuration Bits and ID Locations
	6.8 Accessing Labels From Other Modules
	6.9 Paging and Banking Issues
	6.10 Unavailable Directives
	6.11 Generating the Object Module
	6.12 Code Examples

	Chapter 7. Macro Language
	7.1 Introduction
	7.2 Highlights
	7.3 Macro Syntax
	7.4 Macro Directives
	7.5 Text Substitution
	7.6 Macro Usage
	7.7 Code Examples

	Chapter 8. Expression Syntax and Operation
	8.1 Introduction
	8.2 Highlights
	8.3 Text Strings
	8.4 Numeric Constants and Radix
	8.5 High/Low/Upper
	8.6 Increment/Decrement (++/--)

	Chapter 9. Example Initialization Code
	9.1 Introduction
	9.2 Highlights
	9.3 Initialization Code Examples

	Chapter 1. MPLINK Preview
	1.1 Introduction
	1.2 Highlights
	1.3 What MPLINK Is
	1.4 What MPLINK Does
	1.5 How MPLINK Helps You
	1.6 MPLINK Examples
	1.7 Platforms Supported

	Chapter 2. MPLINK – Installation and Getting Started
	2.1 Introduction
	2.2 Highlights
	2.3 Installation
	2.4 Overview of Linker
	2.5 Linker Input/Output Files

	Chapter 3. Using MPLINK with DOS
	3.1 Introduction
	3.2 Highlights
	3.3 Linker Command Line Options

	Chapter 4. Using MPLINK with Windows and MPLAB
	4.1 Introduction
	4.2 Highlights
	4.3 MPLAB Projects and MPLINK
	4.4 Setting Up MPLAB to use MPLINK
	4.5 Generating Output Files
	4.6 MPLAB/MPLINK Troubleshooting

	Chapter 5. MPLINK Linker Scripts
	5.1 Introduction
	5.2 Highlights
	5.3 Linker Scripts Defined
	5.4 Command Line Information
	5.5 Memory Region Definitions
	5.6 Logical Section Definitions
	5.7 STACK Definition
	5.8 Linker Script Caveats

	Chapter 6. Linker Processing
	6.1 Introduction
	6.2 Highlights
	6.3 Linker Processing Overview
	6.4 Linker Allocation Algorithm
	6.5 Relocation Example
	6.6 Initialized Data

	Chapter 7. Sample Application 1
	7.1 Highlights
	7.2 Overview
	7.3 Building the Application
	7.4 Source Code

	Chapter 8. Sample Application 2
	8.1 Highlights
	8.2 Overview
	8.3 Building the Application
	8.4 Source Code – Boot Loader
	8.5 Source Code – Firmware

	Chapter 9. Sample Application 3
	9.1 Highlights
	9.2 Overview
	9.3 Building the Application
	9.4 Source Code

	Chapter 10. Sample Application 4
	10.1 Highlights
	10.2 Overview
	10.3 Building the Application
	10.4 Source Code

	Chapter 1. MPLIB Preview
	1.1 Introduction
	1.2 Highlights
	1.3 What MPLIB Is
	1.4 What MPLIB Does
	1.5 How MPLIB Helps You

	Chapter 2. MPLIB – Installation and Getting Started
	2.1 Introduction
	2.2 Highlights
	2.3 Installation
	2.4 Overview of Librarian

	Chapter 3. Using MPLIB
	3.1 Introduction
	3.2 Highlights
	3.3 Usage Format
	3.4 Usage Examples
	3.5 Tips

	Appendix A. Hex File Formats
	A.1 Introduction
	A.2 Highlights
	A.3 Intel Hex Format (.HEX)
	A.4 8-Bit Split Format (.HXL/.HXH)
	A.5 32-Bit Hex Format (.HEX)

	Appendix B. Quick Reference
	B.1 Introduction
	B.2 Highlights
	B.3 MPASM Quick Reference
	B.4 Key to PICmicro Family Instruction Sets
	B.5 12-Bit Core Instruction Set
	B.6 14-Bit Core Instruction Set
	B.7 16-Bit Core Instruction Set
	B.8 Key to Enhanced 16-Bit Core Instruction Set
	B.9 Enhanced 16-Bit Core Instruction Set
	B.10 Hexadecimal to Decimal Conversion
	B.11 ASCII Character Set

	Appendix C. MPASM Errors/Warnings/Messages
	C.1 Introduction
	C.2 Highlights
	C.3 Errors
	C.4 Warnings
	C.5 Messages

	Appendix D. MPLINK Errors/Warnings
	D.1 Introduction
	D.2 Highlights
	D.3 Parse Errors
	D.4 Linker Errors
	D.5 Linker Warnings
	D.6 Library File Errors
	D.7 COFF File Errors
	D.8 COFF To COD Converter Errors
	D.9 COFF To COD Converter Warnings

	Appendix E. MPLIB Errors
	E.1 Introduction
	E.2 Highlights
	E.3 Parse Errors
	E.4 Library File Errors
	E.5 COFF File Errors

	Glossary
	Introduction
	Highlights
	Terms

	Index

