

Tufts University
Electrical and Computer Engineering Department

Senior Design Project: NerdGirls
Instrumentation Panel Group

ADDENDUM

Gladys Magh and Megan Schwartz
May 12, 2003

Nerdgirls Instrumentation Panel Group
Gladys Magh and Megan Schwartz

ADDENDUM: Interrupt Code Results

 An investigation into the functionality of the interrupts was performed late in project
development, and while the results are not as desired, they will assist in the development of
future code for the instrumentation panel group. On the suggestion of Matthew Heller, the
primary consultant, separate code was written to do nothing other than run a PORTB-triggered
interrupt. While this was not successful, the following code displays a timer-triggered interrupt
that is the same in concept and different only in the prompt.
 The three concepts that have been proven work are: an interrupt can be triggered, an
incrementing counter can be the trigger, and the results of the ISR can be displayed through the
incremented rev_count value. The only part of this that is not functional is the fact that it was
not proven that PORTB (the four external interrupt pins) can prompt the ISR instead of the timer.
 The code, named mattcode_timer_int.asm, uses the same configuration bit settings and
variable names as previously defined in the original code for the program. The vector
declarations differ only in that the interrupt routine vector is stored in addresss 0x0004, instead
of 0x0008, as before. The interrupt save context section clears the TMR0 overflow interrupt flag
in the INTCON register, as well as re-enables the Timer0 interrupt again. If these two lines are
not included, then the interrupt will run once, but then never again. This section also saves the
current values of the WREG and the STATUS register, to be restored after the ISR is completed.

The interrupt case statement is there to stop interrupts other than the timer interrupt from
running the ISR. If the timer did indeed trigger the interrupt, the ISR_TACHOMETER will run.
This code reads PORTB to clear the interrupt and clears the zeroth bit of the INTCON variable.
These two lines are from the previous code, but do not interfere and were thus left in the code.
The rev_count (number of revolutions occurring by the wheel) is incremented here as well. The
ISR finally restores the STATUS and WREG values as it stored them before, and returns to the
main program.

The program consists of the same data table, and LCDInit call as before. The UART
Initialization was left in the code for future work, as well as the PORTB interrupt initialization
(albeit commented out). It is important to keep the commented sections there so that future
groups may see what was previously attempted by our group to run the PORTB interrupt. The
main part of the code that is important is the initialization of the Timer0 interrupt bits. The
TMR0H and TMR0L registers, which store the value of Timer0, were set to 0xFFF0 in order to
count down time before the interrupt gets triggered. The INTCON register is set to enable both
high and low interrupts, as well as the TMR0 overflow interrupt. Inside the Timer0 Control
Register, T0CON, the TMR0 interrupt was enabled also. Finally, rev_count was initialized to
zero.

The main code begins with a bit set test on the zeroth bit of the rev_count. If the bit is
zero, then the even-interrupt message is displayed. Else, the odd-interrupt message is displayed.
This means that MESSAGE_EVEN and MESSAGE_ODD code is the same for displaying data
on the LCD, just different output to the screen. A three second delay is allowed after either
message, and then the program loops back to the Main.

This successful code will run the TMR0H:TMR0L registers each up to 0xFF (or 0xF0),
then triggers the interrupt once the FF rolls over to 0x00. There is an estimated 2-second count
that occurs between the interrupts from running. As displayed in the watch window, the
rev_count value is incremented each time the TMR0 interrupt runs. This shows our group that an

Nerdgirls Instrumentation Panel Group
Gladys Magh and Megan Schwartz

interrupt can be run successfully when prompted by the timer, and code inside the ISR runs
successfully as well.

Thank you to Matthew Heller for his assistance with this code.

References

Predko, Myke. Programming and Customizing PICmicro Microcontrollers. McGraw-Hill, 2002.
 Page 849.

