Stephanie Mayer

I. Introduction
The Nerd Girls’ Solar car has many electrical components, in order to manage the state of the car and provide an interface for information display to the driver. One main part of the electronics is the revolution counter, the base that lets the driver know the speed of the car and the distance it has traveled.

In order to program the FGPA to accomplish this set of tasks, an interface with the axel is a necessity. An optical encoder that attaches around the axel or to a sub axel sends electrical pulses along a line and will be hooked up to the FPGA to provide usable input.
II. Experimental Setup / Procedure

The steps taken to start on this project were mainly algorithmic to begin with. A clear understanding of the different modules and the signals that would be connecting different parts of the electrical infrastructure was necessary before any specifics could be thought out.

Overall the component would have six inputs, the optical encoder output, the sec_tick, the clock, the universal reset, the EEPROM load flag and the lines that carry the odometer value from the EEPROM on power up. The outputs would be MPH, RPM, odometer value and a single bit flag called car_idle.

The component was then designed to be split into three modules, the Optical Encoder Interface, MPH and RPM Lookup and the Odometer logic. The different modules were then encompassed into a larger umbrella file called Entire to encompass all the signals that would be passing from module to module, simplifying the interface.

[image: image1.jpg]ENTIRE

encodsr

cecick Optical Encoder

Interface

tenth_of_mile

esprom o Jozd

ceprom_aH (20

Odometer

docké reset

I

1o everymodule)

s (ki)

th of mike

ws

v

LookUp MPH/RPM

ROM:inputPS,

outupt MPH RPM

eeprom_ ut (8CD) £0D_asci ASCH)
(20bits B0 bite)

e ASCIERPMLASCE coridle
(ebits& 32brs

Figure II.1: Module Setup within Component

The module setup can be seen in Figure II.1. The breakdown is very simple to understand and each module serves its own purpose. Each signal is a single bit wide unless stated otherwise in the diagram. An overview of the functionality of the code is included in this section; for more detail please refer to the code comments in the Appendix of this report.

The Optical Encoder Interface file requires two signals other than the clock and reset, the encoder value and the sec_tick pulse. The main purpose of this file is to compare the encoder to the sec_tick pulse and to output their relationship in the form of revolutions per second, after a thorough process of comparison.
The input signal encoder is first debounced through two steps. First a counter called en_cnt is set up to determine the length of the input tick that is reset with every rising edge of the encoder input. That counter is then tested against a value (to ensure the high on the encoder line was held long enough) and if true, a pulse (half the length of the clk period) is sent out on an internal line called deb_encoder.
Once the encoder input has been debounced into an internal signal deb_encoder, the next step is to compare the pulses on deb_encoder to the sec_tick. The Revolution Counter process of the code counts the number of pulses on the deb_encoder line that take place in one second. At the end of the second, the final sum stored in the signal rps_cnt is then set onto the output line RPS, to be used by other modules within Entire.

The Tenth of Mile Pulse Generator is a state machine implemented within a sequential process that outputs the tenth_of_mile flag. The state machine serves the purpose of keeping a running sum of all the rps_cnt values outputted at the rising edge of each sec_tick. This running sum is compared to a value (the number of revolutions of the wheel that indicate that the car has traveled a tenth of a mile). This value currently has a dummy value in its place, as mechanical measurements are needed for it to be customized. The state machine also generates a pulse on the tenth_of_mile flag when necessary and decrements the running count of revolutions the appropriate amount. This state machine is triggered every second.
The look up MPH and RPM is a very simple module that takes in the value of the RPS generated by the Optical Encoder Interface and looks up in a ROM, the corresponding MPH and RPM values and outputs them. If the car is not moving, and the RPS value is 0, then the flag output car_idle is given a value of 1. For the LCD to display the values, the MPH and RPM are stored in the ROM in ASCII format.
The odometer module loads the value stored in the EEPROM whenever the eeprom_od_load input signal from the EEPROM is high, which should occur at every power up of the car. After that initial value receiving, the odometer module works directly off of the tenth_of_mile flag, incrementing its internal BCD value appropriately. The odometer value is converted to 8-bit ASCII for display purposes on the dashboard LCDs. The odometer module has two outputs, the ASCII odometer value and the BCD value that is stored in the EEPROM on power down. Both sets of data are constantly on the lines and are updated synchronously when a change in is registered.
The code itself can be found in the Appendix of this lab and the internal comments explore the structure of the processes to a degree of detail. All the files were tested individually and in groups, and thorough simulations were run. The only simulations included in this lab are the more prevalent ones, of the optical_encoder_interface and the Entire file – as the functionality of all other modules can be seen through them.
III. Results

The project required many reviews and rewriting of code. Issues occurred in many areas, including detecting two rising edges in one process, manipulating internal signals in multiple processes and all the way down to the simulation irregularities due to the coincidence of edges of the clock and second tick rising edges. All these difficulties were overcome through research and assistance.
All these issues greatly furthered the understanding of the way VHDL works as a language and a mechanism for writing chips. The process was very enjoyable as the students were given more freedom with their understanding, research and process.

All parts of the code were synthesized and simulated correctly. Thorough testing was undergone in order to ensure the validity of the algorithms and their architecture. Outputs of multiple simulations from multiple situations can be found in the Appendix of this report.

The look up table’s ROM was never created with the Xilinx software, as many issues were encountered with programming and connection of that part. Instead, the ROM incorporated in this project is written in a VHDL module with address as input and the data as output and was programmed quickly using fold back. The code for the real ROM, when it is being written onto the FPGA has been started, but the MPH data relies heavily on some of the mechanical components (an example being the distance the car travels with one axel revolution).
In terms of the odometer value and comparison values for things like the debouncing logic, dummy values were used in the code, and need to be determined with greater precision for real life application. The values used were calculated for ease in simulation.

The umbrella module for the code, called entire creates a ‘black box’ around the individual parts and does little other than calling the appropriate files. Entire synthesizes and simulates as expected, proving the project and overall process a success.
IV. Conclusion

The project itself ran a steady course as the semester progressed and the project was completed. Unfortunately due to certain draw backs, like the ROM functionality, the code needs a few adjustments in order to be implemented into the main electrical components of the Nerd Girls’ Solar Car. The wheels need to be measured and some mechanical factors need to be taken into consideration. Once these things have been determined, they can be plugged straight into the code. Overall, the project was a great success and was completed as expected.

IV. Appendix

PAGE
1

